FR - Notice de fonctionnement

GB - User's manual

DE - Bedienungsanleitung

IT - Manuale d'uso

ES - Manual de instrucciones

ENERIUM 50/150 POWER MONITORING DEVICE

Table of contents

INTRO	DDUCTION	6
1.	AIM OF THE MANUAL	7
2.	SAFETY	8
3. 3.1 3.2 3.3 3.4 3.5	GUARANTEE, RESPONSIBILITY AND PRO Guarantee Property rights Copyright Registered trademarks End-of-life of the devices	9 9 9 9 9 9 9 9
4.	PACKAGING1	0
EQUI	PMENT DESCRIPTION1	1
5. 5.1 5.2	GENERAL PRESENTATION	3 3 4
6. 6.1 6.2 6.3 6.4 6.5 6.6	FRONT FACE1Elements1LCD Screen1Optical Interface1Optical Cable1OK Key1Navigation Keys1	5 5 6 7 7 7
7. 1 7.2 7.3 7.4 7.5 7.6	BACK FACE1Elements1Measurement terminal1Auxiliary source terminal1Optional cards1RS485 terminal2Ethernet Connector2	8 8 9 9 20 1
SOFT	WARE DESCRIPTION2	2
8. 8.1 8.2 8.3 8.4	MAIN SCREEN2Home Screen2Main Menu2Abbreviations2Synoptic of the menus2	3 23 24 24
9. 9.1 9.2 9.3 9.4 9.5	MEASUREMENTS (SCREEN)2Access2"Measurements" screen2Information2Return2Notes2	6 26 26 28 28
10. 10.1 10.2 10.3 10.4 10.5	ENERGIES (SCREEN)3Access3"Energy" Screen3Information3Return3Notes3	80 80 80 81 82

11. 11.1 11.2 11.3 11.4	SERVICES (SCREEN) Access "Services" Screen Information Return	33 33 33 33 34
12. 1 12.1 12.2 12.3 12.4	(SCREEN) ALARMS Access "Alarms" Screen Information Return	35 35 35 35 36
13 .1 13.2 13.3 13.4 13.5	CUSTOMIZED SCREENS Access "Customized Screens" Screen Principle Screens Return	37 37 37 37 37 38
14. 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8	(SCREEN) CONFIGURATION Access	39 39 39 40 41 42 43 43
15. 15.1 15.2 15.3	HARMONICS Access "Harmonics" Screen Return	45 45 45 46
16. 16.1 16.2 16.3	FRESNEL AND GAUGES Access "Fresnel and gauges" Screen Return	47 47 47 49
17.	LOAD CURVES	50
18. 18.1 18.2 18.3 18.4	Recorded variables Synchronization modes Operating modes of recording curves Indicators of the recording curve	51 51 51 51 52
INSTA	LLATION	53
19. 19.1 Opera	MECHANICAL ASSEMBLY Cutting ations: Continuation	54 54 54
20. 20.1 20.2 20.3 20.4 20.5	ELECTRICAL CONNECTION Preliminary notes Connection of voltage and current inputs RS485 Connection <i>Ethernet</i> Connection Connection of input and output cards	55 55 57 58 59

20.6	Connection of the auxiliary source 60)
USE	61	
21. 21.1 21.2	OPERATING PROCEDURE 62 Complete Procedure 62 How to 62	2
22. 22.1 22.2	LOCALE OR REMOTE COMMUNICATION. 64 <i>E.view</i> application	l n
23.	MAINTENANCE66	5
Тесн	NICAL CHARACTERISTICS67	,
24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 24.10 24.11	CHARACTERISTICS68Measurements68Load curves69Alarms69Analog outputs69Recording curves69Electrical70Optional cards71Metrology72Mechanical73Environmental constraints74Accessories74	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
25. 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.14 25.15 25.16 25.17 25.18 25.19 25.20 25.21 25.20 25.21 25.22 25.23 25.24 25.25	MEASURED VARIABLES 75Ground voltage75Line voltages75Current75Active power75Transit direction of powers76Reactive power76Apparent Power76Power factor76Cos(ϕ)76Peak factor77Tan(ϕ)77Frequency77Harmonics77Harmonics rate77Unbalance78Unbalance78Phase order78Calculation of minima80Minima of variables80Maxima of variables81Maxima of average variables81Maxima of average variables81	

64

Introduction

1. AIM OF THE MANUAL

This manual is meant for any person wishing to use an *ENERIUM 50* or *ENERIUM 150* Central Readout Station for the measurement of network variables (V, U, I, F, P, Q, S, FP, tg ϕ , THD, etc.) and energy variables.

The present manual informs about:

- The product functions
- Product implementation and use
- Product characteristics

The *Chauvin Arnoux Energy* Company has printed this manual with the purpose to provide simple and precise information.

The Chauvin Arnoux Energy Company does not assume any responsibility for any wrong interpretation. Although all efforts have been made to offer a manual as precise as possible, the latter may however include technical inaccuracies and/or typographical errors. The product owner must keep this manual for the entire duration of the product's use.

Any information or modification pertaining to this manual should be addressed to:

Chauvin Arnoux Energy

Publication Manager 1 - 9 Rue d'Arcueil BP 675 92542 MONTROUGE Cedex FRANCE

2. SAFETY

You have just acquired an ENERIUM Measure station of 50 or 150 type and we thank you for trusting our company and products.

To obtain the best service from your device:

- Read this operation notice carefully;
- Follow the precautions for usage which are mentioned in it.

Meaning of the symbol. Caution! Read the reference manual carefully before using the device. In this reference manual, if the instructions preceded by this symbol are not followed or executed well, they can cause a bodily injury and damage the device and the installations.

This device is meant to be used as per the conditions of the installation category III, degree of pollution 2, complying with the provisions of the CEI 61010-1 standard. It has come out of the plant in perfect conditions of technical safety. In order to preserve these conditions and guarantee a safe use of the device, the user should comply with the indications and the symbols contained in this manual.

Before the installation, check the voltage for use and the coincidental network voltage.

Before any intervention, check that the device is disconnected from all the voltage sources.

When use in total safety is no longer possible, the device should be disabled and insured against an accidental use.

The use in total safety is no longer guaranteed in the following cases:

- The device is visibly damaged,
- The device no longer operates:
 - after prolonged storage in unfavorable conditions;
 - after serious damages inflicted during transport.

Operators' Safety

Read the following recommendations carefully before installing the device.

The device described in this manual is meant to be used exclusively by personnel trained beforehand. The maintenance operations must be exclusively executed by qualified and authorized personnel. For a correct and safe use and for all maintenance activities, it is essential that the personnel follow the normal safety procedures.

Precautions in case of breakdown

When it is suspected that the device is no longer safe (for example due to damages inflicted during transport or at the time of its use), it should be disabled. It is necessary to ensure that it will not be used accidentally. The device will be entrusted to authorized technicians with a view to inspect it.

Instruction for installation

On receipt of the device, check that it is intact and has not been subjected to any damage during transport. In case of problem, contact the after-sales service for possible repair or replacement.

Instruction for cleaning

When the device is disconnected from the electricity network, use only a dry rag to clean the external surface. Do not use either abrasive products or solvents. Do not wet the connection terminals.

3. GUARANTEE, RESPONSIBILITY AND PROPERTY

3.1 Guarantee

The guarantee is applicable, except for express stipulation, during twelve months after the installation of the equipment (see our General Sales Conditions, communicated on request).

3.2 Property rights

All manuals and documentation of any nature whatever are the property of *Chauvin Arnoux Energy* and are protected by copyright, all rights reserved. They cannot be distributed, translated or reproduced, in whole or in part, in whichever manner and under whichever form.

3.3 Copyright

All Rights reserved. Reproduction, adaptation or translation of the present manual is prohibited without prior authorization, within the limits envisaged by the legislation governing the copyright rights.

Copyright Chauvin Arnoux Energy - 2007.

First edition, September 2007.

3.4 Registered trademarks

ENERIUM is a trademark registered by Chauvin Arnoux Energy

3.5 End-of-life of the devices

The products that we market do not enter the domain of the decree no.2005-829 pertaining to the composition of electrical equipments and elimination of waste originating from these equipments.

In compliance with article L541-2 of the environment code, it is the responsibility of the holder of the waste to ensure it or ensure the elimination.

4. PACKAGING

The equipment is delivered as per your order. It shall, at the minimum, include the following articles:

Name	Q ^{ty}
ENERIUM Measure Station Type 50 or 150.	1
Simplified commissioning manual (A4 format)	1
Plastic bag with the equipment, varying according to the model	1
Attachment parts on a panel for the ENERIUM 50 or 150 models	2

Variable equipment

Name	Q ^{ty}
Detachable Connector(s) associated with optional cards	0 to 2

Equipment Description

5. GENERAL PRESENTATION

5.1 Presentation

ENERIUM is a measure station in 96 x 96 format, complying with the DIN 43700 standard, for all types of electrical networks, meant for all measurement applications, display and supervision of low and medium voltage networks.

The ENERIUM Central readout station is aimed for companies managing the monitoring and reduction of energy costs in an environmental framework and for sustainable development, as well as for industries having complex electrical networks justifying monitoring and accurate calculation.

Thus, more than 50 network variables (U, V, I, P, Q, S, FP, tg ϕ , THD, active, reactive and effective energy, THD, etc.) are analyzed.

The information gathered is available on the front of the device by means of a graphical monochrome LCD display, as well as a On/Off output of RS485 type as per the ModBus/RTU protocol or Ethernet as per *ModBus*/TCP RTU protocol, whereas one or several optional outputs provide an alarm report which delivers metering pulses or manages analog outputs.

Its programming enables a precise adaptation of the device to the environment.

The measure station comes in two models named *ENERIUM 50* and *ENERIUM 150*.

General view of the ENERIUM 150 readout station

Model Comparison 5.2

The table presented below gives the main features of versions 50 and 150. The detailed technical and electrical characteristics are part of chapter 24 on page 68.

	ENERIUM 50	ENERIUM 150		
Measurements				
Calculation of the neutral current Yes		S		
3 or 4 wire network management	3 or 4 wire network management Yes			
Tan ϕ	Ye	S		
Harmonic range	25	50		
400 Hz Network	Ye	S		
Graphic User Interface				
Customizable screens	Ye	S		
Input-output cards (I/O)				
Optional card (1)	1			
Alarms				
Elementary alarms	16	6		
General Alarms	8			
Event log FIFO	Yes			
Curves				
Load curve	8 variables from amo	ong possible 10 (2)		
Recording curves	cording curves No Yes			
Communication Interface				
Optical (front face)	ptical (front face) Yes			
Ethernet (ModBus / TCP RTU) (3)	Yes			
RS 485 (ModBus RTU) (3)	Yes			
IP address parametering in front	Yes			
Graphics				
Fresnel Diagram	No	Yes		
Gauges	No	Yes		
Histograms (harmonics)	No	Yes		

The optional cards are: 2 analog outputs, 2 On/Off outputs, 2 On/Off inputs and 1 On/Off input+ 1 On/Off output.
 P+, P-, Q1, Q2, Q3, Q4, S+, S-, E-TOR1, E-TOR2.
 The communication interfaces RS 485 and Ethernet cannot be used simultaneously.

6. FRONT FACE

6.1 Elements

This paragraph presents the elements accessible in the front face for each of the two available models.

Front View of the 'ENERIUM 50 or 150.

Function	See §
LCD display screen.	6.2
OK Validation key	6.5
Optical interface	6.3
Navigation keys	6.6
	Function LCD display screen. OK Validation key Optical interface Navigation keys

6.2 LCD Screen

This screen displays:

- All the measured and calculated variables (see chapters 9 to 13 in pages 26 to 37)
- All parametering variables (see chapter 14, in page 39).

The positive, transmitting type LCD screen is a graphic display module, permanently back-lit by white LEDs.

The contrast is adjustable locally or by the transmission of a command word from a local or remote communication. This adjustment is possible directly with the *E.view* software (refer to the corresponding notice).

The main menu is presented as follows:

The main menu.

All the displayed screens can be viewed, in one of the five languages available (French, English, German, Italian and Spanish). The language can be modified (see paragraph 14.5.3, in page 41).

For *ENERIUM 50*, the icons $\mathbf{M}_{\mathbf{k}}$ and $\mathbf{k}_{\mathbf{k}}$ are not available.

6.2.1 Upper part

The title of the displayed screen is in the upper part of all the screens ("Ph-N Voltage" in the figure below).

Example of display with the screen title in the upper part

6.2.2 Central part

The measurement menus as in the following examples are found here.

The detail of screens pertaining to:

- measurement, see chapters 9 to 13, pages 26 to 37.
- parametering, see chapter 14, page 39.

Voltage	Ph-N
V1	0.00
V2	0.00
V3	0.00
UT	0.00

The central part displays measurements.

6.2.3 Lower part

It displays the information pictograms, from fixed position. These are listed in the following table.

The figure below gives all the icons that can be viewed in the lower part of the LCD screen.

The icons in the lower part of the screen (visualization of all the icons for illustration only)

lcon	Meaning
	At least one active general alarm exists. Blinking Pictogram.
\bigotimes	Order of phases incorrect; the voltage wires are badly connected. Fixed Pictogram.
	Verification of the order of phases of the voltage lines is carried out continuously. The calculation is done over 3 periods and the 10 periods of the reference input signal.
	Communication ongoing on one of the communication ports (remote or local). Blinking Pictogram.
	Automatic scrolling mode of the active screens. Fixed Pictogram.
-11-	Capacitive type network. Fixed Pictogram. This pictogram has the same screen position as the next pictogram.
000	Inductive type network. Fixed Pictogram. This pictogram has the same screen position as the preceding.
G	Generator network. There is no pictogram for a receiver network. Fixed Pictogram.

6.2.4 Additional Information

Upon powering up the measure station, a home screen is displayed for a few seconds. This screen is displays the *Chauvin Arnoux Energy* logo and the station model. The last screen then appears, displayed before the last break of the auxiliary source. If the last screen displayed was a parametering screen, it is the main menu which is displayed.

It is also possible to read the screen number displayed in the *ModBus* memory field. It is also possible to force the display of a screen by sending a command word thru a local or remote communication (see document MSO-7388 - Mapping and command words – Contact *Chauvin Arnoux Energy* to obtain this document).

When no action has been detected on the keys for more than 3 minutes, the display back-light is switched into standby mode.

6.3 Optical Interface

6.3.1 Presentation

The optical interface is made of the following elements:

Ref.	Function
1.	Positioning device.
2.	Infrared communication emitter and receiver.

Close view of the front optical interface.

6.3.2 Function

The optical interface allows parametering and reading the measurements recorded by *ENERIUM* locally from a PCusing an optical cable (see paragraph 6.4, page 17).

6.4 Optical Cable

The optical cable is an accessory, sold separately, which is connected to *ENERIUM* optical interface in order to transfer information between a PC and *ENERIUM*. The USB type connecOn/Off side of the optical cable is connected to the PC. The communication protocol between *ENERIUM* and the PC uses a *ModBus* in RTU mode.

For the communication parametering, see chapter 22, page 64.

The optical cable.

6.5 OK Key

This key validates the selected choice or the entered parameters. It also enables the input or output of the editing mode.

Position of the OK key.

6.6 Navigation Keys

These keys enable the navigation in the different menus.

6.6.1 Function

Key	Function
Leftward movement of the cursor	
N	Return to the previous menu
\triangleright	Rightward movement of the cursor
\bigtriangledown	Menu: downward movement of the cursor
	Parametering: value decrementation
\bigtriangleup	Menu: upward movement of the cursor
	Parametering: value incrementation

6.6.2 Use

The diagram of paragraph 8.4 on page 24 specifies the use of the navigation keys for the selection of menus.

7. BACK FACE

7.1 Elements

The figure below shows the elements described in this chapter.

Back view of ENERIUM for all versions.

Ref.	Function	See §	Page
1.	RS485 terminal (if no Ethernet connector).	7.5	20
2.	Optional card terminal.	7.4	19
3.	Ethernet Connector (if no RS485 terminal).	7.6	21
4.	"Voltage" input terminals.	7.2.1	18
5.	"Current" input terminals.	7.2.2	18
6.	Auxiliary source terminal.	7.3	19

7.2 Measurement terminal

The network monitoring inputs, namely those monitoring the line voltages and those originating from the current transformers, will be connected on this terminal.

Paragraph 20.2 on page 55 describes the different authorized connections.

7.2.1 Voltage inputs

The "Voltage input" terminals are marked 1 to 5 on the label on the rear part of *ENERIUM*.

The electrical characteristics of the voltage inputs are given in paragraph 24.6.3 page 70.

The terminal characteristics are given in paragraph 24.6.3 on page 70.

Detail of the voltage input terminals.

7.2.2 Current inputs

The "Current input" terminals are marked 6 to 11 on the label on the rear part of *ENERIUM*.

The electrical characteristics of the current inputs are given in paragraph 24.6.4 page 70.

The terminal characteristics are given in paragraph 24.6.4 page 70.

Detail of the current input terminals.

7.3 Auxiliary source terminal

The "Auxiliary source" terminals are marked 12 and 13 on the rear part of *ENERIUM*.

Two types of power supplies are available:

- *High voltage power supply*: the supply is made without preference on the same terminals (no change), for alternating or direct current.
- Low voltage direct power supply: the supply is exclusively made with DC. The polarity is free.

The electrical characteristics of the supplies are given in paragraph 24.6.6 page 71.

The characteristics of the terminals are given in paragraph 24.6.6 page 71.

Location of the auxiliary source terminal.

In the case of a power cut of the auxiliary source, the strategic data are saved. See paragraph 24.6.7 page 71.

7.4 Optional cards

Four card models are available:

- 2 analog output card (paragraph 7.4.1);
- 2 On/Off output card (paragraph 7.4.2);
- 2 input card (paragraph 7.4.3);
- 1 input and 1 output card (paragraph 7.4.4).

An optional card can be installed inside *ENERIUM*. A cache protects the unused location.

The terminal of each of these cards is accessible in the upper part of *ENERIUM*.

The terminal characteristics are given in paragraph 24.7.1 page 71.

Location of the optional cards.

7.4.1 2 Analog output Card

This card has two independent analog outputs, each generating a direct current proportional to one of the *ENERIUM* variables. Using a local or remote link, the user may assign to each analog output:

- A variable to be monitored (V, U, I, P, Q, S, FP, cos (φ), Tan (φ) and frequency)
- Min and max output values

The transfer function is always of single slope type. When the output variable reaches and exceeds the maximum output value, the output remains blocked at the maximum output value. When the output variable reaches and exceeds the minimum output value, the output remains blocked at the minimum output value.

It is possible to block an analog output with a value lying between the authorized minimum and maximum, by sending a command word over a local or remote communication. The output is blocked automatically at the end of 10 minutes or after the station restart.

The detail of the management of each of the two analog outputs (assigned variable, etc.) is defined by means of *ModBus* command words (see document *MSO-7388 – Mapping and command*. Contact *Chauvin Arnoux Energy* to obtain this document).

The cabling details are given in paragraph 20.5.1 page 59.

The electrical characteristics of the analog outputs are given in paragraph 24.7.2 page 71. The analog output can remain open permanently.

7.4.2 2 On/Off output card

This card has two logic individual and independent outputs (digital), each programmable in either alarm or pulsed mode.

For each of these, the user assigns one or two output modes thru local or remote communication:

Alarm mode: the output is activated when a variable measured or calculated by ENERIUM

crosses a threshold (maximal or minimum) which is allocated to it, for a time longer than the configured time-lag. This elementary alarm is deactivated when the variable crosses the threshold again, with close hysteresis.

• **Pulsed mode**: the pulse output is of relay type. In an off state, the relay is open. A pulse is considered emitted when the relay is closed. The pulses are counted from the energy in the primary side of the transformer. This metering can be directed to a pulse meter (for example the *CCT Chauvin Arnoux Energy*).

Example of chronogram in pulsed mode

To manage the pulse output, this output must be associated (when parametering) with energy from among three-phase active energy in generator mode, three-phase active energy in receiver mode, three-phase reactive energy of quadrants 1, 2, 3, and 4 and three-phase effective energy in generator mode.

The pulse weight is also parameterable among the values 1, 10, 100, 1k, 10k and 100k.

The pulse width is common to all the outputs and it is programmable at 30 ms then from 50 to 500 ms, in steps of 50 ms, using a local or remote communication.

The pulse emission over one second is rounded to the nearest millisecond.

It is possible to block a pulse output in the High or Low state by sending a command word or thru the E.view software using a local or remote communication. The output is automatically unblocked after 10 minutes or after the station restart.

Each logic output is composed of a static rely ensuring isolation between the command and the output. This is a simple contact, which is closed to emit a pulse or activate an alarm.

The detail of the management of each of the two On/Off outputs (assigned variable, etc.) is defined using *ModBus* command words (see document *MSO*-7388 – *Mapping and command words*. Contact *Chauvin Arnoux Energy* to obtain this document)

The cabling details are mentioned in paragraph 20.5.2, page 59.

The electrical characteristics of On/Off outputs are given in paragraph 20.5.2, on page 59.

7.4.3 2 On/Off -input Card

This card has two independent inputs (digital), each programmable in pulse or synchronisation mode. For each of these the user allocates one of the two input modes thru local or remote communication:

- Pulsed mode: when the input is configured in pulsed mode, the received pulses are multiplied by the pulse weight on this input and are then added in an integrating meter. The weight of the pulse is parameterable from 0.0001 to 999.9999. It is possible to initialize the meters with any value by sending a command word (see document MSO-7388 Mapping and command words. Contact Chauvin Arnoux Energy to obtain this document) or by the E.view software using a local or remote communication
- Synchronization input mode: the input is used to synchronize the records or to run alarms. It can also serve to synchronize the ENERIUM internal alarm; the clock is then parametered as an external synchronization input. When a pulse is detected on this input, ENERIUM automatically sets the internal clock to the rounded-off hour (minutes and seconds are worth zero), if the internal clock has less than 5 seconds gap with the rounded-off hour. It is also possible to read the input status in the ModBus mapping (see document MSO-7388 Mapping and command words. Contact Chauvin Arnoux Energy to obtain this document).

The detail of the management of each of the two logic inputs (digital) is defined by means of *ModBus* command words (see document *MSO-7388 - Mapping and command words*. Contact *Chauvin Arnoux Energy* to obtain this document)

The cabling detail is mentioned in paragraph 20.5.2 page 59.

The electrical characteristics of On/Off inputs are given in paragraph 24.7.3 page 71.

7.4.4 1 On/Off input and 1 On/Off output Card

This card has a single On/Off logic input and a single On/Off logic output.

The electrical characteristics of this card are similar to the "2 On/Off inputs" and "2 On/Off outputs" above.

7.5 RS485 terminal

Available optionally, this terminal is connected to the RS 485 bus.

The RS 485 option is not available if the Ethernet option is available.

Parametering of the RS 485 option is given in paragraph 14.3 on page 39.

The characteristics of the terminals are given in paragraph 24.6.5, *RS 485 Output* page 70.

The RS 485 terminal ensures the transfer of information between the PC and *ENERIUM* in the framework of:

- parametering of ENERIUM
- reading of real time or recorded measurements in *ENERIUM*.

Location of the terminal of the RS 485 card.

Up to 247 ENERIUMs can be linked on the same RS485 communication line.

The cabling detail is mentioned in paragraph 20.3 page 57.

7.6 *Ethernet Connector*

Available optionally, this connector is connected to the local *Ethernet* network.

The Ethernet option is not available if the RS 485 option is available. .

The parametering of the Ethernet option is mentioned in paragraph 14.4 on page 40.

The connector characteristics are given in paragraph 24.6.5, *Ethernet Output* on page 70.

The Ethernet connector ensures the transfer of information between a PC and *ENERIUM* in case of:

- parametering of ENERIUM
- reading of the real time or saved measurements in *ENERIUM*.

Location of the Ethernet connector.

The cabling details are mentioned in paragraph 20.4, page 58.

Note: a twisted cable is recommended for direct communication between a PC and *ENERIUM*.

Software Description

8. MAIN SCREEN

It is assumed here that the mechanical assembly (chapter 19 page 54) and electrical connections (chapter 20 page 55) have been performed.

This chapter describes the menus accessible by the operator from the main screen.

8.1 Home Screen

When powering up, a loading screen is displayed for a few seconds while all the station functions are being activated.

Under the "*Enerium 50*" or "*Enerium 150*" line (depending on the model) a progress bar appears showing the status of the equipment loading process.

The Home screen.

8.2 Main Menu

The main menu is then displayed.

Main menu.

8.2.1 Icons

The main screen displays the eight menus (*only six menus on ENERIUM 50*) available to the operator thru icons (see the table below).

The upper part of the screen shows the selected icon name in the parametered language (see paragraph 14.5.3 page 41).

lcon	Function	Page
\sim	Measurements : displays the screen of the measured variables (U, I, P, THD, etc.).	26
W	Energy : displays the screens of active, reactive and effective energy meters, cumulated by the station.	30
6	Services : displays the screens of variables (the time meters for the device operating time and the internal time stamping) linked to the maintenance of the station.	33
	Alarms: displays the screens for alarm information (visualisation of alarm status and relays associated with On/Off outputs) and the existing alarm acknowledgement.	35
	Customized screens : displays the screens parameterable by the user thru local or remote communication.	37
ş	Configuration : displays the menu for configuration parameter changes (TP – TC ratio, communication, display scrolling, language, password).	39
	Harmonics : displays the harmonic amplitude of the range 1 to 50 in the form of histograms for the electrical variables V1, V2, V3, U12, U23, U31, I1, I2 and I3 (<i>ENERIUM 150 only</i>).	45
	Fresnel and gauges : displays the Fresnel diagrams of electrical variables V, U and I as well as the bar charts for the electrical variables V, U, I and P (<i>ENERIUM 150</i> only).	47

Recall: the selection of an icon is made using navigation keys (see § 6.6 page 17). When an icon is selected, its look changes by the appearance of a routing creating a relief button.

The action on the $"\mbox{OK"}$ key shows the menu related to the selected icon.

The **"Up**" and **"Down**" keys scroll between lines. Pressing the **"OK**" key displays the selected screen.

8.2.2 Icons at the bottom of the screen

These icons are located in the lower part of the different screens. They display the following information:

lcon	Function
Ĵ	At least one active global alarm. Blinking Pictogram.
$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Wrong phase order; the voltage inputs are badly connected. Fixed Pictogram.
	A cabling test thru verification of the phase order on the voltage lines is carried out continuously. The calculation is made over 3 periods and for all 10 periods of the reference signal input.
	Communication ongoing on one of the communication ports (remote or local). Blinking Pictogram.
	Automatic scrolling mode of the screens active. Fixed Pictogram.
╢	Capacitive type network: this pictogram has the same position on the screen as the next pictogram.
000	Inductive type network: this pictogram has the same position on the screen as the preceding pictogram.
G	Generator network: there is no pictogram for a receiver network. Fixed Pictogram.

8.3 Abbreviations

The *ENERIUM* display uses abbreviations of electrical symbols. These symbols, also used in the present document, are the following:

8.3	.1	Units
		••••••

Symbols	Description
%	Percent Symbol.
А	Real RMS current symbol in Ampere
V	Real RMS voltage symbol in Volt.
Hz	Network frequency.
VA	Apparent power (total if 3)).
VAR	Reactive power (total if 3)).
W	Active power (total if 3 φ).
kVAh	Total apparent energy in kilo.

Symbols	Description
MVAh	Total effective energy in mega.
kVARh	Total reactive energy in kilo.
MVARh	Total reactive energy in mega.
kWh	Total active energy in kilo.
MWh	Total active energy in mega.

8.3.2 Electric variables

Symbols	Description	
F	Symbol for Frequency in Hertz.	
FP	Power factor (ratio active / effective power).	
Hxx la	Harmonic rate (%) of the 'xx' current range for the "a" conductor ($a = 1, 2 \text{ or } 3$).	
Hxx Uab	Harmonic rate (%) of 'xx' voltage range for the "ab" line phase (ab = 12, or 23 or 31).	
lx	Instantaneous current (A) of the "x" conductor $(x = 1, 2, 3)$.	
In	Neutral current (A) (value available only in a 4- wire networks).	
Ix Max Moy	Maximum average current (A) (x = 1, 2, 3 or N)	
Р	Active power (W).	
Pmoy	Active power (W) averaged over a defined duration Pmoy	
Q	Reactive power (VAR).	
S	Apparent power (VA).	
Smoy	Effective power (VA) averaged over a defined duration.	
THD Ix	Harmonic distortion rate (%) of the current in the "x" conductor (x = 1, 2 or 3).	
THD Uab	Harmonic distortion rate (%) of the "ab" line phase (ab = 12, 23 or 31).	
Uab	Real composed voltage (V) between the "ab" phase (ab = 12, or 23 or 31).	
Vx	Ground voltage (V) between phase (x = 1, 2 ou 3) and neutral.	
VT	Real RMS voltage (V) between neutral and earth.	

8.4 Synoptic of the menus

All the menus accessible from the main menu are shown hereafter with the reference to the related chapters.

Flowchart of all the main menus accessible on ENERIUM.

9. MEASUREMENTS (SCREEN

This screen displays the selection menu for the basic measurements (V, U, I, P, Q, S, PF, THD, H, etc.).

9.1 Access

This is achieved from the main menu by selecting the icon \bigwedge and pressing on the **OK** key.

9.2 "Measurements" screen

This screen looks as follows:

Measurements	
Voltage Ph-N Voltage Ph-Ph Current max dmd Current max dmd Power Power dmd THD voltage Ph-Ph THD current Harmonics voltage Harmonics current	Ph-Ph
⊫	7000

The Measurements Screen.

All the information displayed can be retrieved thru local or remote communication.

9.3 Information

This paragraph explains each screen accessible from the Measurements screen after pressing the OK key.

For each of the screens, navigation between the screens is done by pressing the keys $\blacktriangle \nabla$. See paragraph 9.5.1 page 28 for the rules for

value displays.

See paragraph 8.2.2 page 24 for the meaning of the icons at the bottom of the screen.

9.3.1 Ph-N Voltage

Display of each phase/neutral voltage difference; The ∇T value is the earth/neutral voltage difference.

Example of the Ph-N Voltage screen

9.3.2 Ph-Ph Voltage

Display of the line voltage difference between phases (U_{12}, U_{23}, U_{31}) and frequency.

Example of a Ph-Ph Voltage screen.

ME01A

9.3.3 Current

Display of the current of each line.

Current		
I1	2.00) () RA
12	2.00) (RA
I3	2.00) (kA
IN	5.00) (A
	►	7000

Example of the Current screen.

9.3.4 Maximum average current

Display of the maximum average current of each line; the duration of integration is defined using a local or remote communication.

Current max	dmd		
I1MaxDMD 2	2.1	00	kA
I2MaxDMD	2.1	00	kA
I3MaxDMD	2.1	00	kA
INMaxDMD	5.0	00	Ĥ
		000	

Example of a Maximum Average Current screen

See paragraph 25.19 page 79 for the calculation mode of the averages by *ENERIUM*.

9.3.5 Power

An example of display is shown below.

Example of a Power screen

Display of:

s: apparent power.

- **p**: active power. This value can be negative if the load operates in a generator mode. The icon **(c)** is then displayed at the bottom of the screen.
- Q: reactive power. This value can be positive if the load is of inductive type. The icon *m* is then displayed at the bottom of the screen. This value can be negative if the load is of capacitive type. The icon → is then displayed at the bottom of the screen.
- **FP**: power factor (ratio of the active / effective powers). This value can be negative if the load operates in generator. The icon **(**; is then displayed at the bottom of the screen.

Thru the (c) and (c) or icons -||-, users know at anytime the quadrant in which the load works. Page 30 shows the quadrant positions.

9.3.6 Average power

Display of the active (P) and effective (S) average powers over duration. The duration is defined by a local or remote communication.

Po	ower	DMD				
p	DMD		1.	38	30	MM
s	DMD		1.	38	30	MVA
					000	

Example of an Average Power screen

See paragraph 25.19 page 79 for the calculation mode of the average by *ENERIUM*.

9.3.7 Ph-Ph Voltage THD

Display of the harmonic distortion rate on the three voltage lines.

The *Harmonics* function displays graphics only for *ENERIUM 150* (see chapter 15 page 45).

THD U23 3.00) z
THD U31 3.00) %

Example of a Ph-Ph Voltage THD screen.

9.3.8 Current THD

Display of harmonic distortion rates on the three currents; the harmonic distortion rate of the neutral current is not measured and thus not displayed.

THD	current	-	-
THD	I1	5.0	0 %
тно	12	5.0	0 %
THD	I3	5.0	0 %
			000

Example of a Current THD screen

The *Harmonics* function displays graphics only for *ENERIUM 150* (see chapter 15 page 45).

9.3.9 Ph-Ph Voltage Harmonics

Display of higher harmonic rates and of their ranges over the three line voltages. Each indication is read as follows (example):

• H03 U12: "range 3" harmonic rate of the U12 line voltage

Example of a Ph-Ph voltage Harmonics screen.

The *Harmonics* function displays graphics only for *ENERIUM 150* (see chapter 15, page 45).

9.3.10 Current Harmonics

Display of higher harmonic factors and their ranges on the three currents. Each indication is read as follows (example):

• H02 I1: "range 2" harmonic factor of the current I1.

Example of a Current Harmonics screen.

The Harmonics function displays graphics only for $\it ENERIUM$ 150 (see chapter 15 page 45).

9.4 Return

Pressing on the \blacktriangleleft key returns to the "Measurements" screen. Pressing twice on the \blacktriangleleft key returns to the main screen (see paragraphs 8.2 page 23).

9.5 Notes

9.5.1 Display rule for voltages

Voltage displays (simple or composed) are made using four digits with one floating point. The following table shows the floating point position and the unit used for different measured values.

V <	Display
10	9,999 V
100	99,99 V
1 000	999,9 V
10 000	9,999 kV
100 000	99,99 kV
1 000 000	999,9 kV
10 000 000	9,999 MV
100 000 000	99,99 MV

9.5.2 Display rule for currents

Current displays are made using four digits with one floating point. The following table shows the floating point position and the unit used for different values measured.

١<	Display
10	9,999 A
100	99,99 A
1 000	999,9 A
10 000	9,999 kA

100 000	99,99 kA
1 000 000	999,9 kA
10 000 000	9,999 MA
100 000 000	99,99 MA

9.5.3 Display rule for frequency

Frequency displays are made using four digits with one floating point. As an example, frequency is displayed as 99.99 Hz.

9.5.4 Display rule for power

Power displays (active, reactive or effective) are made using four digits with one floating point. The following table shows the floating point position and the unit used for different values measured.

P <	Display
10	9,999 u
100	99,99 u
1 000	999,9 u
10 000	9,999 ku
100 000	99,99 ku
1 000 000	999,9 ku
10 000 000	9,999 Mu
100 000 000	99,99 Mu

For an active power, "u" means W. For a reactive power, "u" means VAR. For an effective power, "u" means VA.

9.5.5 Display rule for harmonics

Harmonic (of range x) or total harmonic distortion rate displays are made using four digits with one floating point. The point position is adjusted based on the value measured.

9.5.6 Display rule for the power factor

Power factor displays are made using three digits with one floating point (i.e. 9.99). A logo is used for the unit.

In case of an inductive power factor, the unit is the $\overline{000}$ pictogram. In case of a capacitive power factor, the unit is the -+ pictogram.

9.5.7 Display rule for the time meter

Ttime meter displays are made using ten digits with one floating point and the unit is given. 99999999.99 h is an example.

10. ENERGIES (SCREEN)

This screen displays the menu for selection of active, reactive and effective energy measurements.

10.1 Access

This is achieved from the main menu by selecting the icon \widehat{W} and pressing the **OK** key.

10.2 "Energy" Screen

This screen looks as follows:

Energies Tous comen 50	
True power EP- Reactive power E01 Reactive power E03 Reactive power E03 Reactive power E04 Apparent power ES- Apparent power ES-	
	7000

The Energy Screen.

All the information displayed can be retrieved thru local or remote communication.

Reminder of the quadrants used by ENERIUM.

10.3 Information

This paragraph shows each of the screens accessible from the Energy screen by pressing the **OK** key.

For all the displays, scrolling between screens is done with the ▲▼ keys.

See paragraph 10.5.1 page 32, for the rules for value displays.

Also see paragraph 8.2.2 page 24 for the meaning of the icons at the bottom of the screen.

10.3.1 EP+ active Energy

Display of two active positive cumulated energy meters in receiver mode (quadrants 1 and 4) when powering up *ENERIUM.* The total value refers to a "two values" group: (see example):

MWh	
231	
kWh	
457.	897

indicates a metering of 231 457.897 kWh.

Example of an EP+ active Energy Screen

10.3.2 EP- active Energy

Display of two active negative cumulated and absolute energy meters in generator mode (quadrants 2 and 3) when powering up *ENERIUM*. The total value refers to a "two values" group: (see example):

Indicates a metering of 231 457.897 kWh.

Example of an EP- active energy screen

10.3.3 EQ1 Reactive energy

Display of two positive reactive cumulated energy meters in receiver mode (quadrants 1) when powering up *ENERIUM*. The total value refers to a "two value" group: (see example):

MVARh 231	
kVARh	
457.	897

Indicates the metering of 231 457.897 kVARh.

Example of a EQ1 Reactive Energy screen.

10.3.4 EQ2 Reactive energy

Display of two positive reactive cumulated energy meters in generator mode (quadrant 2) when powering up *ENERIUM*.

The data is read as indicated in paragraph 10.3.3.

10.3.5 EQ3 Reactive Energy

Display of two negative reactive cumulated energy meters in generator mode (quadrant 3) when powering up *ENERIUM*

The data is read as indicated in paragraph 10.3.3.

10.3.6 EQ4 Reactive energy

Display of two negative reactive cumulated energy meters in generator mode (quadrant 4) when powering up *ENERIUM*.

The data is read as indicated in paragraph 10.3.3.

10.3.7 ES+ Apparent Energy

Display of two apparent energy meters cumulated and absolute in receiver mode (quadrants 1 and 4) when powering up *ENERIUM*. The total value refers to a "two values" group: (see example):

MVAh	
231	
kVAh	
457	.897

Indicates a metering of 231 457.897 kVAh.

Apparent	power ES+
	MVAh
	231
	kVAh
45	7.897
	▶ 7000

Example of an ES+ Apparent Energy Screen

10.3.8 ES- Apparent Energy

Display of two apparent cumulated and absolute energy meters in generator mode (quadrants 2 and 3) when powering up *ENERIUM*.

The data is read as indicated in paragraph 10.3.7.

10.4 Return

Pressing on the \blacktriangleleft key returns to the "Measurements" screen. Pressing twice on the \blacktriangleleft key returns to the main screen.

10.5 Notes

10.5.1 Display rules for energies

Energy meter display (active, reactive or apparent) is made on two lines.

On the first line, the upper part of the energy meter is displayed in the form 999999 Muh. On the second line, the lower part of the energy meter is displayed in the form 999.999 kuh. The letter "u" is defined as follows:

Energy	Unit
Active	W
Reactive	VAR
Effective	VA

11. SERVICES (SCREEN)

This screen shows the menu for selecting information relating to the device, time meters for the device's operating time and the internal timestamping.

11.1 Access

This is done from the main menu by selecting the icon and by pressing the **OK** key.

11.2 "Services" Screen

This screen is as follows:

Product .	informati	on	
Hour met Date / H	er our		

The Services Screen.

All displayed information can be retrieved thru local or remote communication. No modification of the displayed values is possible.

11.3 Information

This paragraph shows each of the screens accessible from the Services screen after pressing the **OK** key.

For all displays, the direct passage to the next or previous screen is possible with the $\checkmark \triangle$ keys. See also paragraph 8.2.2, on page 24, for the meaning of the icons at the bottom of the screen.

11.3.1 Product Information

The following information is displayed:

Example of a Product information screen

Ref.	Indication
1.	Type of <i>ENERIUM</i> (50, 150) and network frequency.
2.	Serial number of ENERIUM.
3.	Version number of the embedded software.
4.	Indicates "Blank" if no communication card is installed, else indicates the ModBus address for the option RS 485 or the IP address for the Ethernet options (see paragraph 14.3, in page 39 and in paragraph 14.4, in page 40).
5	Indicates "Blank" if no input/output card is installed, else indicates the type of input/output card inserted (see paragraph 7.4, on page 19).

11.3.2 Time meter

Three time meters are seen. The information, which can only be read, is displayed over ten digits, with fixed point as follows:

Example of a Time meter Screen.

Ref.	Indication
1.	"Operating Time": Time meter: duration of presence of the supply voltage (auxiliary source) on <i>ENERIUM</i> (see paragraph 7.3, on page 19). This indication is useful for the maintenance of <i>ENERIUM</i> .
2.	"Network Presence" Time meter: duration during which, at least one ground voltage, from among V1[1s], V2[1s] and V3[1s] is different from zero. This indication is useful for the maintenance of the monitored load.
3.	"In Load" Time meter: duration during which, at least one current, from among I1[1s], I2[1s] and I3[1s], is different from zero. This indication is useful for the maintenance of the monitored load.

11.3.3 Date/Time

The following information, which ca only be read, is displayed:

Date /	Hour	
	20 Nov 2000	
	20 NOV 2000	
	10:36:27	
	▶ 7000	

Example of a Date/Time Screen.

Ref.	Indication
1.	Date
2.	Time

The date/time variable is recorded in the form of number of seconds elapsed since January 1st, 1970.

The display format of the date is "dd mmm yyyy", for all languages.

The date and time are modifiable only by local or remote communication.

11.4 Return

One press on the \blacktriangleleft key enables the return to the "Services" screen. Two successive presses on the \blacktriangleleft key return to the main screen.

12. (SCREEN) ALARMS

This screen shows the menu for selection of alarms (visualisation of the status of alarms and relays associated with On/Off outputs) and zero setting of possibly stored alarms.

12.1 Access

This is done from the main menu by selecting the icon and pressing on the **OK** key.

12.2 "Alarms" Screen

This screen is as follows:

Alarms Alarms reset Global alarm Global alarm Global alarm Global alarm Global alarm Global alarm Global alarm	1234567-8	
		000

The Alarms screen, on call.

All displayed information can be retrieved thru local or remote communication.

12.3 Information

This paragraph shows each of the screens accessible from the Alarms screen after pressing the **OK** key.

For each of the screens, the passage to the next or previous screens is done by pressing the keys $\blacktriangle \nabla$.

See also paragraph 8.2.2, on page 24, for the meaning of the icons at the bottom of the screen.

12.3.1 Alarms

The following information is displayed:

Alarms		
Number	Status	Relay
1	_	-
2	-	-
3	-	
4	-	-
5	-	-
b	-	-
Ĩ.	-	-
8	-	-
		000

This screen shows, for each of the eight global alarms, the status of the active alarm, or having been activated in the first column, and the status of associated On/Off outputs (relays) (paragraph 7.4.2, on page 19) in the second column.

Indication	Explanation
Number	Number of the global alarm (a global alarm is sometimes a combination of two elementary alarms).
Status	Status of the alarm (active or inactive) in the station.
	- non-programmed alarm
	 non active programmed alarm.
	 active programmed alarm.
Relay	Status of the associated relay (paragraph 7.4.2, in page 19).
	 relay not associated with the alarm
	 relay associated with the alarm, but not active.
	 relay associated with active alarm.

The definition of alarms (number, NO/NF, delay time, threshold, measured variable) is only possible by local or remote communication (see chapter 22, page 64).

12.3.2 Resetting of Alarms

This screen enables the re-initialization of the alarms (release of the alarm of associated On/Off outputs) upon validation of the choice YES.

Example of an Alarm resetting screen.

To re-initialize the alarms, proceed as follows:

- 1. The Alarms Resetting screen is displayed.
- 2. Press on **OK** to enter the procedure.
- 3. Press on ▶ to highlight YES (black background).

To quit this procedure without re-initializing the alarms, press on \blacktriangleleft to highlight NO (black background).

- 4. Press on OK to validate the choice.
- 5. Return to the previous screen by pressing on \blacktriangleleft .

12.3.3 General Alarm (1 to 8)

Each of these eight screens displays the status, for each of the 8 global alarms (activated, deactivated) of this alarm, the associated load relay, the corresponding logic equation and elementary alarms.

A global alarm is activated by a combination of elementary alarms, combination defined from the *E.view* application (see the corresponding manual).

	Stat Rela	us - y -		
	Equ	atio	n	
ist Ivl	AI.	Sta	tus	
]	
			7000	

Example of a Global alarm screen

Indication	Explanation
Status	Status of this global alarm (active or inactive) in the station.
	- non-programmed alarm
	 non active programmed alarm.
	 active programmed alarm.
Relay	Status of the relay associated with this general alarm.
	- relay not associated with the alarm.
	\bigcirc relay associated with the alarm, but not active.
	• relay associated with the alarm and active.
El. Alarm	Name of the associated electrical variable, ex V1.
Status	Status of the elementary alarm output associated with this global alarm.
	- output not associated with the alarm.
	\bigcirc output associated with the alarm, but not
	active.
	 output associated with the alarm and active.
Equation	Logic Equation AND or OR

The activation of a general alarm is signaled locally by the blinking of the backlighting of the display area.

Thus, if a global alarm is activated, the *ENERIUM* screen will blink. The blinking is stopped after resetting (RAZ) of the status word for the alarms (command available under *E.view* or in the document *MSO-7388* – *Mapping and command words*).

12.4 Return

One press on the \blacktriangleleft key enables the return to the "Alarms" screen. Two successive presses on the \blacktriangleleft key return to the main screen.
13. CUSTOMIZED SCREENS

This screen shows the menu for selection of one of the three groups of screens defined using local or remote communication.

13.1 Access

From the main menu by selecting the icon *s* and pressing on the **OK** key.

13.2 "Customized Screens" Screen

Before any programming, the screen is as follows:

U1 TN) _ (U12		$\frac{n(\Phi)}{1-1}$	-P1	
TH	:	H03	HUS	HOT	HOS	
					700	5

The "Customized Screens" screen.

13.3 Principle

Each of the three screens, basically named Title 1, Title 2 and Title3, can be freely configured by the user, using local or remote communication. Each of these three titles collects, in a screen specific to the user, a set of four measurements which the user wants to display simultaneously. All the combinations of data display are possible, from the variables measured by *ENERIUM* (see document *MSO-7388 – Mapping and command words.* Contact *Chauvin Arnoux Energy* to obtain this document).

To view these three screens:

• Either **manually**, by access to this menu and selecting one of the three screens.

 Or by programmed automatic scrolling, of one, two or three of these screens.
 The *E.view* software ensures the parametering of these customisable screens.

13.4 Screens

This paragraph shows each screen accessible from the Customised Screens screen (after pressing the **OK** key, in their factory configuration.

I1	0.00 A
V1	0.00
P1	0.00
F	0.00 Hz

Example of a Customized Screen.

13.4.1 Title 1: "S-P-Q-Tan(φ) "

When not redefined by the user, this screen displays:

Reminder: the **Title** name is defined by the *E.view* application (see this manual).

- Line 1: S three-phase.
- Line 2: P three-phase.
- Line 3: Q three-phase
- Line 4: Tan (φ).

13.4.2 Title 2: "V1-U12-I1-FP1 "

When not redefined by the user, this screen displays:

- Line 1: V1
- Line 2: U12
- Line 3: I1
- Line 4: FP1.

13.4.3 Title 3: " In: H03 H05 H07 H09 "

When not redefined by the user, this screen displays the harmonics of range 3, 5, 7 and 9 present on the neutral current In.

- Line 1: H03.
- Line 2: H05.
- Line 3: H07.
- Line 4: H09.

13.5 Return

One press on the \blacktriangleleft key returns to the "Customized Screens" screen. Two successive presses on the \blacktriangleleft key return to the main screen.

14. (SCREEN) CONFIGURATION

This screen shows the *Configuration* menu of *ENERIUM*.

14.1 Access

From the main menu by selecting the icon *for and* pressing the **OK** key.

14.2 "Configuration " screen

The screen is as follows:

Configuration	
Remote communication	
Electrical network	
	-

Th Configuration screen.

If a password has already been defined, this is necessary beforehand to access the Configuration screen. To do this, use the $\blacktriangle \forall$ keys to modify the highlighted value (black background) and $\blacktriangleright \blacktriangleleft$ to change the position of the cursor. Press on **OK** to validate. If the password has been lost, the *E.View* software enables to retrieve it. The password is defined as indicated in paragraph

14.5.5, on page 41). The default password is 0000.

A password can be requested before entry in the Configuration screen.

14.3 Remote Communication RS 485

This information defines the characteristics of the RS485 remote communication (see paragraph 20.3, on page 57) between *ENERIUM* and the reading equipment.

Proceed as follows:

- 1. The Configuration screen is displayed.
- Select the Remote Communication line with the
 ▲▼ keys and press on OK to display the Remote
 Communication screen.

The RS485 Communication screen.

14.3.1 JBus Address

- 1. When the Remote Communication screen is displayed, press **OK** to select JBus Address.
- 2. Press on **OK** to select the value (address) to be modified.
- 3. Use the ▼▲ keys to modify the highlighted value on the black background and ◀▶ to change the position of the cursor. The acceptable addresses range from 001 to 247, inclusive of the limits.
- 4. Press **OK** to validate.

14.3.2 Speed (Bauds)

- 1. Select the Speed (Bds) line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the value displayed (transmission speed in Bauds). The predefined values are 2400, 4800, 9600, 19200, 38400 and 115200.
- 3. Press on **OK** to validate.

14.3.3 Parity

- 1. Select the Parity line with the **V**▲ keys and press on **OK**.
- Use the ▼▲ keys to modify the value displayed (parity). The predefined values are Without, Odd and Even.
- 3. Press on **OK** to validate.

14.3.4 Stop Bit

- 1. Select the Stop Bits line with the ▼▲keys and press on OK.
- Use the ▼▲ keys to modify the value displayed (number of stop bits). The displayable values are 1 and 2.
- 3. Press on **OK** to validate.

14.3.5 Reversal (ms)

- 1. Select the Reversal (ms) line with the ▼▲ keys and press on OK.
- 2. Use the V▲ keys to modify the value displayed (reversal time in ms). The displayable values range from 0 to 500 by increments of 50. The reversal time, expressed in milliseconds, corresponds to the waiting time between the time when the RS485 frame has been received and the time when *ENERIUM* responds. This value is to be defined based on the number of *ENERIUM* connected on the RS485 line and the quality of the
- 3. Press on **OK** to validate.

field bus.

14.3.6 Lock Communication

By this option RS485 communication and optical head local communication are disable.

14.3.7 Return

Press once on the ◀ key to return to the "Configuration" menu.

Press twice on the ◀ key to return to the main menu.

14.4 Remote Ethernet Communication

This information defines the Remote Ethernet communication characteristics (see paragraph 20.4, on page 58) between *ENERIUM* and the reading equipment.

Proceed as follows:

- 1. The Configuration screen is displayed.
- Select the Remote Communication line with the
 ▼▲ keys and press on OK to display the Remote
 Communication screen.

Remote com	municati	.on
IP adress Mask Gateway	000.00 255.25 000.00	90.000.000 55.000.000 90.000.000

The Ethernet Communication Screen.

14.4.1 IP Address

- When the Remote Communication screen is displayed, press on OK to select the IP Address line.
- 2. Press on **OK** to select the value (address) to be modified.
- 3. Use the ▼▲ keys to modify the highlighted value on the black background and the ◀▶ keys to change the position of the cursor.
- 4. Press on OK to validate.

14.4.2 Mask

- 1. Select the Mask line with the **V**▲ keys and press on **OK**.
- Use the V▲ keys to modify the value highlighted on the black background and the ◀▶ keys to change the position of the cursor.
- 3. Press on OK to validate.

14.4.3 Gateway

- 1. Select the Gateway line with the ▲▼ keys and press on OK.
- Use the ▲▼ keys to modify the value highlighted on the black background and the ▶◀ keys to change the position of the cursor.
- 3. Press on **OK** to validate.

14.4.4 Lock Communication

By this option RS485 communication and optical head local communication are disable.

14.4.5 Return

Press once on the ◀ key to return to the "Configuration" menu.

Press twice on the \blacktriangleleft key to return to the main menu.

14.5 Display

This information defines the following display characteristics:

- **Scrolling**: activation or deactivation of the scrolling for customized screens.
- **Time**: duration of display of each customized screen.
- Language: language for message display.
- Contrast: contrast level of the LCD display.
- **Password**: definition of a password to access the Configuration screen.

Proceed as follows for access to these sub-menus:

- 1. The Configuration screen is displayed.
- 2. Select the Display line with the **▼**▲ keys and press on **OK** to display the Display screen.

The Display screen.

14.5.1 Scrolling

Activates or deactivates the possibility for scrolling of measurement screens as well as the possible display time; proceed as follows:

- 1. When the Display screen is displayed, press on OK to select Scrolling.
- 2. Press on **OK** to select the value to be modified.
- Use the V▲ keys to modify the value displayed. The displayable values are Yes and No.

NO: the display screens will not scroll. Only the manually selected screen will be continuously displayed.

YES: the display screens, having been defined, by *E.view* as the ones to be displayed one after the other, will be displayed cyclically at a periodicity defined by the value Time (see below). These screens will be predominant with respect to the

normal display. All the visualization screens can be placed in this list, in any order and possibly several times.

It is possible to automatically set the parameters for a maximum of 16 visualization screens. The list of screens to be scrolled is configurable using local or remote communication.

Pressing any key enables to block the automatic scrolling mode and thus navigate with the keys in the different screens. If no key is pressed for 10 seconds and the automatic scrolling mode is always active, then the screens scroll again automatically one after the other.

4. Press on OK to validate.

14.5.2 Time (s)

Defines the display time for each selected screen. Proceed as follows:

- 1. Select the Time (ms) line with the **V**▲ keys and press on **OK**.
- Use the ▼▲ keys to modify the underlined value
 ◆ to change the position of the cursor. The acceptable values range from 01 to 10.
- 3. Press on **OK** to validate.

14.5.3 Language

Defines the language for message display; Proceed as follows:

- 1. Select the Language line with the ▼▲ keys, for example.
- 2. Use the **▼**▲ keys to modify the active language.

The available languages are French, English, Spanish, German and Italian.

3. Press on OK to validate.

14.5.4 Contrast

Defines the contrast level of the LCD display; Proceed as follows:

- 1. Select the Contrast line and press on OK.
- Use the ▼▲ keys to modify the contrast level. A 0 level corresponds to a pale screen (low contrast); a 7 level displays a darker screen (high contrast).
- 3. Press on OK to validate.

14.5.5 Password

If the password is different from "0000", (parametering when received from the factory corresponding to a free

access), a password will be requested at the time of entry in the *Configuration* screen.

Proceed as follows:

- 1. Select the Password line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the highlighted value (black background) and ◀▶ to change the position of the cursor.

The range of acceptable codes is that of the ASCII table.

If a code other than 0000 is activated, access to the Configuration screen will only be possible after request for this password.

3. Press on **OK** to validate.

The password is active only 30 seconds after its definition. Thus, after immediate return to the home screen from the *Configuration* menu, the latter can be redefined without request of the password if the 30 seconds have not yet not elapsed.

14.5.6 Return

It is essential to return to the main menu by successive presses on the \blacktriangleleft key in order to quit the *Configuration* mode and prohibit the access to this mode if a password has been entered (paragraph 14.5.5, page 41).

No automatic return to the main menu is expected. However, if the power supply of the measure station is interrupted, the station restarts from the main menu and not as usual from the last screen displayed.

14.6 Electrical Network

This information defines the transformation ratios of voltage and current transformers used at the voltage and current entry terminals (see paragraph 20.2, on page 55).

Indeed, all the measurements being viewed from the primary side of the client transformers, the client transformer values are parametered in *ENERIUM*. The product of the CT primary by the PT primary should not be more than 693.0 MW (maximum three-phase power

 $= \sqrt{3} \times 693 \text{ MW} = 1.2 \text{ GW}$).).

Proceed as follows:

- 1. The Configuration screen is displayed.
- Select the Electrical network line, and press on OK to display the Electrical network screen.

Electrical network TP primary TP secondary TC primary	0000400 0000400 0005000
TC secondary 3 wires / 4 wires	0000005 4 wires
	000

The Electrical Network screen

14.6.1 TP Primary

Defines the maximum voltage of the primary (line voltage) of the voltage transformer; Proceed as follows:

- 1. Display the Electrical network sceen and press on **OK** to select TP Primary.
- 2. Press on **OK** to select the value to be modified.
- Use the ▼▲ keys to modify the value displayed and ◀▶ to change the position of the cursor. This value corresponds to the maximum operating voltage indicated on the primary of the voltage transformer. The primary (line voltage) of the TP transformer

lies between 100 V and 650,000 V. The TP primary can be adjusted in increment of 1 V.

4. Press on **OK** to validate.

14.6.2 TP Secondary

Defines the maximum voltage of the secondary of the voltage transformer; Proceed as follows:

- 1. Select the TP Secondary line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the underlined value and ◀▶ to change the position of the cursor. This value corresponds to the maximum operating voltage indicated on the secondary of the voltage transformer. The secondary (line voltage) of the TP transformer

lies between 100 V and 480 V. The TP secondary can be adjusted in increments of 1 V.

3. Press on **OK** to validate.

14.6.3 TC Primary

Defines the maximum current of the primary of the current transformer; Proceed as follows:

- Select the TC Primary line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the underlined value and ◀▶ to change the position of the cursor.

This value corresponds to the maximum working current indicated on the primary of the current transformer.

The primary of the TC transformer lies between 1 A and 25,000 A. The TC primary can be adjusted in increments of 1 A.

3. Press on **OK** to validate.

14.6.4 TC Secondary

Defines the secondary current of the current transformer; Proceed as follows:

- 1. Select the TC Secondary line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the underlined value. This value corresponds to the maximum working current indicated on the secondary of the current transformer. The secondary of the TC transformer lies between

1 A and 5 A. The TC secondary can be adjusted in inrements of 1 A.

3. Press on **OK** to validate.

14.6.5 3 wire / 4 wire

Defines the type of network to be monitored; Proceed as follows:

- 1. Select the 3 wire/4 wire line with the ▼▲ keys and press on OK.
- Use the ▼▲ keys to modify the selection displayed.
 3 wire: non-distributed neutral.
 4 wire: distributed neutral.
- 3. Press on OK to validate.

14.6.6 Return

Press on the \blacktriangleleft key to return to the "Configuration" screen.

Press twice on the ◀ key to return to the main menu.

14.7 Default values

This table indicates the default values of the Configuration menu when the device is delivered.

RS 485 Communication (*)			
Address	001		
Speed	9600		
Parity	Sans		
Stop Bit	1		
Reversal	50		

Ethernet Communication (*)			
IP Address	000.000.000		
Mask	255.255.000.000		
Gateway	000.000.000.000		

 $(^{*}) RS$ 485 and Ethernet communications cannot be shown at the same time.

Display	
Scrolling	NO
Time	03
Language	Français
Contrast	3
Password	0000

Electrical network	
TP Primary	400
TP Secondary	400
TC Primary	5000
TC Secondary	5
3 wire/4 wire	4 wire

14.8 Notes

If some parameters can be modified directly from the navigation keys of the display, others can only be defined using local or remote communication.

For local or remote communication, see chapter 22, on page 64.

The parameter setting by local or remote communication can be done using the *E.view* software. They enable the remote parameter setting and visualization (*E.view*) using a digital connection (RS485, modem, optical, etc.).

Any other software or automaton compatible with the ModBus RTU standard enables the parameter setting of *ENERIUM*.

The reader can refer to the specific manual for this application.

It is accepted that *ENERIUM* is supplied (see paragraph 20.6, page 60) and connected to peripheral equipment (see chapter 20, page 55). However, the parameter setting can be performed without the peripheral equipment being connected.

For additional information on the MODBUS/RTU and MODBBUS/JCP/RTU protocol, contact *Chauvin Arnoux Energy* to obtain the document *MSO-7388* – *Mappings and command words*.

15. HARMONICS

This screen displays the menu of *Harmonics* only on *ENERIUM* 150. It enables the graphical visualization of harmonics, range by range, the three ground voltages, three line voltages, three currents and the corresponding distortion factors.

15.1 Access

From the main menu by selecting the icon **the line** and pressing the **OK** key.

15.2 "Harmonics" Screen

The screen is as follows:

Harmonics Harmonics	V1			
Harmonics Harmonics Harmonics Harmonics Harmonics Harmonics Harmonics	U2 U12 U23 U31 I1 I2 I3			
		•	000	

Harmonics screen.

It is used as follows:

- 1. The Harmonics screen is displayed.
- Select the desired line with the V▲ keys and press on OK to display the corresponding screen. Refer to the next paragraphs for details.

15.2.1 V1 Harmonics

Press on the **OK** key to display the harmonics and the additional data on the ground voltage V1. The display is for example as follows:

The V1 Harmonics Screens

- The horizontal axis indicates the harmonic ranges from 1 to 50 for *ENERIUM* 150. Range 0 corresponds to the continuous component and ranges 1 to 50 correspond to harmonics.
- The vertical axis (0-100 %) indicates the harmonics ratio in percentage with respect to the basic (range 1).
- V1: instantaneous ground voltage in volts.
- **Hxx**: value in percentage related to the most important harmonic found between ranges 1 and 50.
- **THD**: total harmonic distortion (see formula used in paragraph 25.14, on page 77.

15.2.2 V2 Harmonics

Displays the harmonics and additional data on ground voltage V2. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.3 V3 Harmonics

Displays the harmonics and additional data on the ground voltage V3. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.4 U12 Harmonics

Displays the harmonics and additional data on the line voltage U12. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.5 U23 Harmonics

Displays the harmonics and additional data on the line voltage U23. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.6 U31 Harmonics

Displays the harmonics and additional data on the line voltage U31. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.7 I1 Harmonics

Displays the harmonics and additional data on the current I1. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.8 I2 Harmonics

Displays the harmonics and additional data on the current I2. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.2.9 I3 Harmonics

Displays the harmonics and additional data on the current I3. Refer to paragraph *15.2.1 - V1 Harmonics*, on page 45 for details.

15.3 Return

Press twice on the ◀ key to return to the main menu.

16. FRESNEL AND GAUGE

This screen displays the *Fresnel and gauges* menu on an *ENERIUM 15* only. It enables the graphic visualization of:

- Three ground and line voltages, and currents in the form of a Fresnel diagram.
- Three ground and line voltages, currents and powers (P1, P2, P3) in the form of baragraphs.

16.1 Access

From the main menu by selecting the icon \bigcirc and pressing the **OK** key.

16.2 "Fresnel and gauges" Screen

The screen is as follows:

Phasor	diagrams	and gauges
Phasor Phasor Phasor Gauges Gauges Gauges Gauges	diagrams diagrams diagrams Vph-n Vph-ph currents power	Voh-n Voh-ph currents
		7000

The Fresnel and gauge screen.

It is used as follows:

- 1. The Fresnel and gauges screen is displayed.
- Select the desired line with the V▲ keys and press on OK to display the corresponding screen. Refer to the next paragraphs for details.

16.2.1 3V Fresnel

Press on the **OK** key to display the Fresnel diagram of the three ground voltages and the additional data. The display is as follows:

Example of a 3V Fresnel diagram

The information is the following:

- V1: instantaneous ground voltage V1 in volts.
- V2: instantaneous ground voltage V2 in volts.
- V3: instantaneous ground voltage V3 in volts.
- **Φ12**: phase shift, in degrees, of the V1 ground voltage with regard to the V2 ground voltage.
- **Φ23**: phase shift, in degrees, of the V2 ground voltage with regard to the V3 ground voltage.
- **Φ31**: phase shift, in degrees, of the V3 ground voltage with regard to the V1 ground voltage.

Press on the key \blacktriangleleft to return to the previous screen.

16.2.2 3U Fresnel

Press on the **OK** key to display the Fresnel diagram of the three ground voltages and the additional data. The display is as follows:

Example of a 3U Fresnel diagram.

The information is the following:

- U12: instantaneous line voltage U12 in volts.
- U23: instantaneous line voltage U23 in volts.
- U31: instantaneous line voltage U31 in volts.
- **Φ12**: phase shift, in degrees, of the U12 line voltage with regard to the U23 line voltage.
- **Φ23**: phase shift, in degrees, of the U23 line voltage with regard to the U31 line voltage.
- **Φ31**: phase shift, in degrees, of the U31 line voltage with regard to the U12 line voltage.

The **Disequilibrium** indication shows the rate of unbalance between the line voltages. A correctly balanced network has a rate close to zero.

Press on the ◀ key to return to the previous screen.

16.2.3 3l Fresnel

Press on the **OK** key to display the Fresnel diagram of the three currents and the additional data. The display is as follows:

Example of a 3I Fresnel diagram.

The information is the following:

- I1: instantaneous current I1 in amperes.
- 12: instantaneous current 12 in amperes.
- 13: instantaneous current 13 in amperes.
- **Φ12**: phase shift, in degrees, of the ground current I1 with regard to the current I2.
- **Φ23**: phase shift, in degrees of the ground current I2 with regard to the current I3.
- **Φ31**: phase shift, in degrees, of the ground current I3 with regard to the current I1.

Press the key \blacktriangleleft to return to the previous screen.

16.2.4 3V Gauges

Press on the **OK** key to display the baragraph of the three ground voltages. The display is as follows:

Example of a 3V baragraph

For example, for a TP primary programmed for 400 V, 100% of the gauge corresponds to $400V/\sqrt{3}$.

Press on the key ◀ to return to the previous screen.

16.2.5 3U Gauges

Press on the **OK** key to display the baragraph diagram of the three line voltages. The display is as follows:

Example of a 3U baragraph.

The indication "0 - 130 %" of the baragraph indicates the instantaneous value measured with regard to the TP primary value programmed in Configuration/Electrical network.

For example, for a TP primary programmed for 400 V, 100% of the gauge corresponds to 400 V.

16.2.6 3I Gauges

Press on the **OK** key to display the baragraph diagram of the three currents. The display is as follows:

Example of a 3I baragraph.

The indication "0-130 %" of the baragraph indicates the instantaneous value measured with regard to the TC primary value programmed in *Configuration/Electrical network*.

For example, for a TC primary programmed for 5000 A, 100 % corresponds to 5000 A.

16.2.7 3P Gauges

Press on the **OK** key to display the baragraph diagram of the three active powers. The display is as follows:

Example of a 3P baragraph.

The indication "0-130 %" of the baragraph indicates the instantaneous value measured with regard to the TC and TO primary values programmed in *Configuration/Electrical network*.

For example, for a TC primary programmed for 5000 A and a TP primary programmed for 400 V, 100 % corresponds to $\frac{5000*400}{\sqrt{3}}$, which is 1 154.7 kW.

16.3 Return

Press the \blacktriangleleft key twice to return to the main menu.

17. LOAD CURVES

This curve cannot be displayed on the *ENERIUM* screen but when using a specific application (*E.view* or any application developed by the user).

The station can activate or not a recording of a load curve. This load curve records from one to eight variables among the following ten variables P+, P-, Q1, Q2, Q3, Q4, S+, S-, TOR1, TOR2. The integration time of these variables can be parametered among the times 5, 10, 12, 15, 20, 30 and 60 minutes.

Each recording is composed of a time stamping (date and time), a status and selected variables (maximum eight). The variables are always ranked in the following order: P+, P-, S+, S-, Q1, Q4, Q2, Q3, TOR1 and TOR2.

The recording depth is based only on the parametered integration time. The number of selected variables does not modify the recording depth.

Tps (1)	5	10	12	15	20	30	60
Pfd (2)	17	34	40	51	68	102	204

(1): Integration time in minutes

(2): Recording depth in days.

The *E.view* software automatically provide the recording depth according to the selected integration time.

The status contains the marking of following events: synchro loss, synchro return and change of configuration and mains supply cut.

It is possible to reinitialize the load curves in totality by sending a command word by local or remote communication. A material entry is allocated to one of the variables On/Off1 to 2, by the sending of a command word over the local or remote communication.

For additional information, contact *Chauvin Arnoux Energy* to obtain:

- the MSO-7389 document for the management of load curves.
- the MSO-7388 document for the mapping and command words.

18. RECORDING CURVES

This function is only available on ENERIUM 150.

These curves cannot be displayed on the *ENERIUM* screen, but by using a specific application (*E.view* or any other application developed by the user).

The product can record till four recording curves. The recording period can be different from one curve to another. This recording period is chosen, for each curve, between 1 and 59 seconds in increments of one second or among the following predefined values: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60 minutes.

The recording depth is only based on the recording period. The system is designed to save a maximum of 4032 values.

E.g.: for a recording period parametered at 1 second, the storage register will be full at the end of 4032 seconds, or 1 hour, 7 minutes and 12 seconds.

According to the recording periods allowed from 1 second to 60 minutes, the recording period ranges from 1 hour, 7 minutes and 12 seconds to 168 days.

The E_Set and E_View software automatically provide the recording depth according to the selected recording period.

18.1 Recorded variables

The following measurements can thus be recorded in a recording curve:

- Average ground voltages
- Average line voltages
- Average currents
- Currents per second
- Three-phase active power per second
- Three-phase apparent power per second
- Three-phase reactive power per second
- Global power factor per second
- Unbalance factor per second
- Average active powers over each phase and threephased in generator and receiver mode.
- Average power factors over each phase and global in generator and receiver mode
- Average Cos(φ) over each phase and global in generator and receiver mode.

- Average three-phase $\text{TAN}(\phi)\text{s}$ in generator and receiver mode.
- Average frequency
- Average peak factors
- Average THDs in ground voltage, line voltage and in current of each phase

18.2 Synchronization modes

There are three types of synchronizations to manage the launch or stop of the recordings of previously selected electrical variables:

- for the first type called "Synchronization on date", the recording of data starts or stops when ENERIUM reaches the programmed date and time.
- For the second type called "Synchronisation on On/Off input", the recording of data starts or stops when the selected On/Off input changes status.
- for the third type called **"Synchronisation on alarm**", the recording of data starts or stops when the selected global alarm is activated. s

18.3 Operating modes of recording curves

There are five operating modes of recording curves:

- **Continuous Mode**: the recordings are done in a circular manner in the curve, the oldest recording being deleted by the latest recording (FIFO type curve). In this mode, the three types of synchronization are authorised for the recording launch. On the other hand, only the writing of a command word on the local or remote communication can stop the data recording.
- Mode with stop on full buffer: the three types of synchronisation are authorised for the launch of the recording. The recording is stopped when the storage register is full.
- Mode with immediate stop on synchro: the recordings are done also in a circular manner in the curve, the oldest recording being deleted by the latest recording (FIFO type curve). The recording

starts as soon as a variable is allotted to the curve. The writing of a command word on the local or remote communication, a "Synchro on On/Off input" or even a "Synchro on alarm" can immediately stop the data recording.

- Mode with stop on centered synchro 25%-75%: the recordings are done in the same manner as in the third mode. But the recording stop occurs only when 75 % of the recording curve contains data recorded after the stop command, which can be the writing of a command word on the local or remote communication, a "Synchro on On/Off input" or even a "Synchro on alarm".
- Mode with stop on centered synchro 50%-50%: the recordings are done in the same manner as in the third mode. But the recording stop occurs only when 50 % of the recording curve contains data recorded after the stop command, which can be the writing of a command word on the local or remote communication, a "Synchro on On/Off input" or even a "Synchro on alarm".

18.4 Indicators of the recording curve

Status of the recording curve

This indicator gives the status of the recording curve. The status is:

- "Non-programmed" if the curve is not programmed, i.e. if the variable allocated to the curve is "none".
- "**Pending**" if a curve is programmed and waiting for the start synchro.
- "In progress" if the curve records values periodically.
- "Terminated" if a stop command came or if the curve stopped by itself.

Filling rate of the curve

This indicator gives the filling rate of the curve. For curves managed in FIFO mode, this rate remains blocked at 100%, when the recordings crash the oldest ones.

When programming a new recording curve, this automatically entails the stop and reset of the curve previously ongoing recording or recorded. The resetting of a trend curve can be launched manually, by writing a command word on the local or remote communication.

All the programmed curves recover their recordings after a break of the auxiliary source, without performing any marking.

It is possible to immediately stop the recording of a curve by sending a command word on the local or remote communication.

The time setting of the product entails no change in the programming. Moreover, no marking is executed in the curves in case of change of time.

For more information, contact Chauvin Arnoux Energy to obtain the MSO-7390 document on recording curves and the MSO-7388 document on the mapping and command words.

Installation

19. MECHANICAL ASSEMBLY

This chapter describes the mechanical assembly of *ENERIUM*. The dimensions are found in paragraph 24.9, on page 73.

19.1 Cutting

Assembling this version is done exclusively on panel. Proceed as follows:

1. Make a cutting as indicated in the following figure.

Dimensions of the cutting of the panel

- 2. Insert *ENERIUM* in the cutting, thru the external part.
- 3. Slide the two table fasteners and push them until you find the correct positioning of *ENERIUM*.

Setting up a panel fastener: pull the clip end and slid it as indicated above.

Operations: Continuation

This consists of the electrical assembly of the *ENERIUM* and its additional elements (voltage transformers, current transformers, etc.).

20. ELECTRICAL CONNECTION

This chapter describes the electrical assembly of *ENERIUM*.

20.1 Preliminary notes

20.1.1 Safety precautions

Before proceeding with the electrical installation of the equipment and its peripheral elements, check that the power supply is disconnected and locked in compliance with good engineering practices and safety rules.

20.1.2 Maximum applicable values

Refer to Chapter 24 – Technical characteristics, on page 68.

It is to be noted that any overshooting of the maximum applicable values can cause a permanent deterioration of the device.

20.1.3 Protection of the U and I inputs

The insertion of fuses on the voltage inputs as well a short circuit system for the current inputs is strongly recommended.

20.1.4 Cables and terminals

The connections are made on:

- screw terminals which can be dismantled for 2.5 mm² cables for the optional cards and the RS485 remote communication.
- fixed screw terminals for the 2.5 mm² cables for the power supply of the station and the voltage measurement inputs.
- fixed screw terminals for the rigid or flexible wires of 6 mm² section for the current measurement inputs.

20.1.5 Precautions against electrical parasites

Although *ENERIUM* is immuned against electrical current disturbances, it is desirable to avoid immediate proximity of parts generating strong electrical parasites (high power contactors, bus bar, etc.). The quality of the communication on the computer bus depends a lot on respecting these precautions.

20.2 Connection of voltage and current inputs

The voltage and current inputs will be connected based on the type of assembly selected. See paragraph 7.2 on page 18, for the terminal localization and the technical details. The abbreviations are as follows:

20.2.1 Unbalanced three-phase, 4 wires -3 TC

Assembly without TP.

Assembly with TP in star.

20.2.2 Balanced three-phase, 4 wires - 1 TC

Assembly with TP.

NN

Assembly with TP in triangle shape.

20.2.4 Unbalanced three-phase, 3 wires - 2 TC

Assembly with TP in triangle shape.

Assembly without TP.

20.3 RS485 Connection

The RS485 output cannot be present when the *Ethernet* card is present.

Only tests on the actual network can validate the best combination (speed, network length, impedance adaptation, etc.).

See paragraph 7.5, on page 20 for the location of the terminal and the technical details.

20.3.1 In undisturbed environment

For an RS485 network in undisturbed electrical environment, if possible use a twisted-pair cable. This cable will be connected to the 18 (A+) and 19 (B-) terminals. The agreement adopted for terminals (A) and (B) corresponds to the El485 standard (§ 3.2) specifying that a logic level "1" on the line corresponds to VB>VA and a logic level "0" corresponds to VA>VB.

Connection of the RS485 link (standard connection).

20.3.2 In disturbed environment

With shielding

In case of a particularly disturbed electrical environment, a shielded twisted-pair cable must be used and the shielding of this cable must be connected to the terminal 0 V (20) of *ENERIUM*.

Connection of the RS485 link in disturbed electrical environment (presence of a shielding)

With shielding and resistances (polarization and load))

In order to improve the quality of transmission in disturbed environment, it is also possible to polarize the line in a single point. This polarization imposes the rest level in the absence of transmission by two resistances of 1.2 k Ω , between the 0 V line and the 5 V line. These resistances are sometimes included in the RS485/RS232 convertors. It is sometimes necessary to adapt the line by connecting a resistance of 120 Ω to the two ends of the bus.

Connection of the RS485 link in disturbed electrical environment with load and polarization resistances

20.4 Ethernet Connection

The *Ethernet* output cannot be present when the RS485 card is present.

Connect the *RJ45 Ethernet* plug of each *ENERIUM* to an RJ45 inlet of a switch (or hub) using an Ethernet cable (straight cable for connection to a switch, twisted cable for the connection to a PC).

See paragraph 7.6, en page 21 for the location of the terminal and the technical details.

Connection of the Ethernet link to a switch.

20.4.1 LED 1: Connection LED

Colour	Meaning
Off	No connection.
Orange	Connection at 10 Mb per second.
Green	Connection at 100 Mb per second.

20.4.2 LED 2: Activity LED

Colour	Meaning
Off	No activity
Orange	Half duplex.
Green	Full duplex.

20.5 Connection of input and output cards

These cards are optional.

The following figures show the labels associated with different optional cards.

1 2 OUT1	2 On/Off outputs option card label
3 4 OUT1	
1 2 1N1	2 On/Off inputs option card label
3 IN2	1 On/Off input and 1 On/Off output option
1 2 3 0UT	card label
4 J	2 analog outputs option card label
3 - 4 + SANA2	

20.5.1 2 output analog card

It is essential to parameter this card using local or remote communication. See paragraph 7.4.1, on page 19 for the technical

details regarding these analog outputs.

Connect the load and the connecting cable as follows:

Card output	Terminal	Function
A01	1	A01 analog output cold point.
A01	2	A01 analog output hot point.
A02	3	A02 analog output cold point.
A02	4	A02 analog output hot point.

Connection of analog outputs.

20.5.2 2 On/Off output card

Refer to paragraph 7.4.2, on page 19 for the technical details regarding these On/Off outputs. It is essential to parameter this card using local or remote communication.

Connect the load and the connecting cable as follows:

Card output	Terminal	Function
OUT1	1-2	No.1 On/Off Output.
OUT2	3-4	No.2 On/Off Output.

Example of connection of On/Off outputs. The polarities on the terminals 1-2 or 3-4 are indifferent.

20.5.3 2 On/Off input card

See paragraph 7.4.3, on page 20 for the technical details regarding these On/Off inputs.

It is essential to parameter this card using local or remote communication.

Connect the input signal to the connecting cable as follows:

Card input	Terminal	Function
IN1	1-2	Signal input and earth. Polarities: indifferent.
IN2	3-4	Signal input B and earth. Polarities: indifferent.

Example of connection of On/Off input in pulsed mode. The polarities on the terminals 1-2 or 3-4 are indifferent.

20.5.4 1 On/Off input and 1 On/Off output card

See paragraph 7.4.4, on page 20 for the technical details.

It is essential to parameter this card using local or remote communication.

Connect the input and the output as follows:

Card output	Terminal	Function
IN1	1	See paragraph 20.5.3.
IN2	2	
OUT3	3	See paragraph 20.5.2.
OUT4	4	

Example of connection of the logic input and output. The polarities in the terminals are indifferent.

20.6 Connection of the auxiliary source

Note: *ENERIUM* is delivered with one of these two types of power supplies. The type of power supply is notified on the back label.

20.6.1 High level supply

Terminal 12	Polarity indifferent. See paragraph 7.3, on
Terminal 13	page 19 for the technical details.

20.6.2 Continuous low level supply

Terminal 12	Polarity indifferent. See paragraph 7.3, on
Terminal 13	page 19 for the technical details.

Connect the A.C or D.C power supply as illustrated below.

Connection of the supply.

A fuse protection is necessary.

Use

21. OPERATING PROCEDURE

21.1 Complete Procedure

This paragraph describes the complete procedure for using *ENERIUM*.

21.1.1 Mechanical assembly

Refer to chapter19, on page 54.

21.1.2 Electrical assembly

Refer to chapter 20, on page 55.

21.1.3 Parametering

Refer to chapter 14, on page 39.

21.1.4 Measurement consultation

Use one of the following methods:

Type of <i>ENERIUM</i>	See page
Manually from the display	22
Locally (PC and optical link)	64
Remote thru RS485 link	64
Remote thru Ethernet link	64

21.2 How to ...

21.2.1 Display the information

Display	§	Page
ModBus Address (define)	14.3	39
ModBus Address (read)	11.3.1	33
Ethernet Address (define)	14.4	40
Ethernet Address (read)	11.3.1	33
Display (Scrolling and time)	14.5	41
Alarm (reset)	12.3.2	36
Alarms active on On/Off output	12.3.1	35
Stop Bit (RS485)	14.3	39
Configure the box	21.1.3	62
Currents (I)	9.3.3	27
Maximum average currents	9.3.4	27
Load curve	17	50

Display	§	Page
Recording curve	18	51
System Date	11.3.3	34
Automatic scrolling of screens	14.5	41
Fresnel Diagram	16.2	47
Customized screens	13.2	37
EP+ active energy	10.3.1	30
EP1 active energy	10.3.2	31
Apparent energy	10.3.7	31
Reactive energy	10.3.3	31
Ethernet – define IP address	14.4	40
Ethernet – read IP address	11.3.1	33
Fresnel (diagram)	16.2	47
Ph-Ph voltage harmonic	9.3.9	28
Current harmonic (I)	9.3.10	28
System time	11.3.3	34
Gauges	16.2.4	48
Display language	14.5.3	41
Password	14.5.5	41
Serial number of the box	11.3.1	33
Software version number	11.3.1	33
Parity (RS485)	14.3	39
Average power (P, S)	9.3.6	27
Powers (S, P, Q, FP)	9.3.5	27
Electrical network	14.6	42
Resetting of alarms	12.3.2	36
Reversal (temps – RS485)	14.3	39
RS485 (parametering)	14.3	39
Box operating time	11.3.2	34
Duration of network presence	11.3.2	34
Load duration	11.3.2	34
Ph-N (U) Voltages	9.3.1	26
Ph-Ph (V) Voltages	9.3.2	26
THD of the Ph-Ph voltage	9.3.7	27
Current THD (I)	9.3.8	28
Enerium Type	11.3.1	33

Display	§	Page
RS485 transmission speed	14.3	39

21.2.2 Modify the parameters

Display	§	Page
RS 485 remote communication *	14.3	39
Ethernet remote communication	14.4	40
Display	14.5	41
Electrical network	14.6	42

(*) The RS 485 and Ethernet interfaces cannot be present at the same time.

22. LOCALE OR REMOTE COMMUNICATION

The local or remote communication enables parameter setting and reading of ENERIUM, either using the *E.view* application, or from any specific application using the ModBus protocol in RTU mode, (Optical or RS485 Interfaces) or ModBus TCP in RTU mode (Ethernet Interface).

For additional information regarding the ModBus/RTU and ModBus/TCP/RTU protocol, contact Chauvin Arnoux Energy to obtain the MS0-7388 document– Mapping and command words.

22.1 *E.view* application

The reader should refer to the specific reference manual for this software.

22.2 ModBus/RTU compatible specific application

22.2.1 Local communication by optical interface

The communication support is described in paragraphs 6.3 and 6.4, on pages 16 and 17.

Communication is performed in *half duplex* mode.

The functions implemented in the products are:

- Function 03 : Reading of N words.
- Function 04 : Reading of N words.
- Function 08 : Reading of diagnostic meters (For details, see below).
- Function 16 : Writing of N words.

The diagnostic meters are:

- Resetting of meters.
- Number of frames received without CRC.
- Number of frames received with CRC.
- Number of exceptional responses.

- Number of frames addressed to the station (outside distribution).
- Number of distribution requests received.
- Number of NAQ responses.
- Number of unready slave responses.
- Number of unprocessed characters.
- Number of responses outside the function 8.

The transmission format is fixed as follows:

- Speed of 38400 bauds.
- 1 start bit.
- 8 data bits.
- Without parity.
- 1 stop bit.
- Reversal time of 0 ms (see paragraph 22.2.2, on page 64, for the internal processing time).

The station responds to all the slave numbers between 1 and 247.

It is also possible to download, via the optical interface only, a new application in the station. In this case, a protocol different from *ModBus* is used.

22.2.2 Remote communication thru the RS485 interface

The communication support is described in paragraph 7.5, on page 20.

Communication is performed in half duplex mode.

The functions implemented in the products are:

- Function 03 : Reading of N words.
- Function 04 : Reading of N words.
- Function 08 : Reading of diagnostic meters (For the details see below).
- Function 16 : Writing of N words.

The diagnostic meters are:

- Resetting of meters.
- Number of frames received without CRC.
- Number of frames received with CRC.
- Number of exceptional responses.
- Number of frames addressed to the station (outside distribution).
- Number of distribution requests received.
- Number of NAQ responses.
- Number of unready slave responses.
- Number of unprocessed characters.
- Number of responses outside the function 8.

The processing of a frame addressed to slave 00 (i.e. all the slaves present on the network) is performed. The product does not send any response.

The transmission format is fixed with 1 start bit and 8 data bits. On the contrary, the slave number, parity, number of stop bits, reversal time and the transmission speed can be parametered.

The product address on the *ModBus* network can be parametered from 1 to 247, in increments of 1.

The communication speed can be parametered from among the values 2400, 4800, 9600, 19200, 38400 and 115200 bauds.

The communication parity can be parametered from among the following values: Odd, Even and without parity.

The number of stop bits for communication can be parametered among the values 1 and 2.

The reversal time is a waiting time between the receipt of the last of the three characters of the frame end and the issue of the first character of the response frame. The reversal time can be parametered from 0 to 500 ms, in increments of 50 ms.

Note: a reversal time configured for 0 ms is not the real reversal time, which is then equal to the internal processing time of the frame, which is around 35 ms. For other values, the parametered time is the real reversal time.

The default values are mentioned in paragraph 14.7, on page 43.

22.2.3 Remote communication thru the Ethernet interface

The communication support is described in paragraph 7.6, on page 21.

According to the status of the network, communication is performed in *half* or *full duplex* mode.

An IP address of 000.000.000 configures *ENERIUM* in DHCP (*Dynamic Host Configuration Protocol*). An IP address is thus automatically assigned to the product by the network's DHCP server.

To determine the allocated IP address and mask, use the *E.view* application and launch the *Search* command under *Network/New Channel* with *Type of channel* parametered to *Ethernet* and *Port number* defined at *502*.

Knowing the serial number of the searched equipment, just establish the correspondence between the IP address and the serial number to know the IP address of the equipment.

It is possible to parameter the IP address, the mask of the sub-network and the gateway by the GUI (see paragraph 14.4, on page 40) or using local or remote communication.

23. MAINTENANCE

Since no electronic or electrical part is exchangeable by the end user, the measure station shall be returned to *Manumesure*, the distribution and after-sales center.

Technical characteristics

24. CHARACTERISTICS

ENERIUM measures and calculates more than 50 electrical variables. All these variables are effective values (RMS).

Instantaneous variables are refreshed every second, except for the THDs, every six seconds.

The mini and maxi variables are updated every second if needed.

The average variables are calculated over a time programmable from 0 to 30 minutes. This variable is refreshed at every tenth period.

24.1 Measurements

	1S	MIN	MAX	AVG	AVG MIN	AVG MAX
V1, V2, V3, Vearth	•	٠	٠	٠		•
U12, U23, U31	•	•	•	•		•
I1, I2, I3, In	•	٠	٠	•		•
P1, P2, P3	•		• (1)	• (1)		
Pt	•	• (1)	• (1)	• (1)		• (1)
Q1, Q2, Q3	•		• (1)	• (1)		
Qt	•	• (1)	• (1)	• (1)		• (1)
S1, S2, S3	•		•	•		
St	•		•	•		•
FP1, FP2, FP3	•			• (1)		
FPt	•			• (1)		• (1)
Cosø1, Cosø2, Cosø3,	•			• (1)		
Cosøt,	•			• (1)	• (1)	• (1)
Tan φ,	•			• (1)	• (1)	• (1)
Frequency	•	•	•	•		
Peak factor V1, V2, V3	•			•		•
Peak factor I1, I2, I3	•			•		•
Unbalance U	•			•		•
Harmonic (2) 1 to 50 V1, V2, V3, U12, U23, U31, I1, I2, I3	•					•
THD V1, V2, V3, U12, U23, U31, I1, I2, I3	•			•		•
Time meters: network presence, in load, auxiliary source	•					
Active, Receiver, Generator Energy	•					
Reactive Energy Qcad1 Qcad2, Qcad3, Qcad4	•					
Effective, Receiver, Generator Energy	•					
Pulsed metering input On/Off1, On/Off2	•					

(1) also measures in generator and receiver mode

(2) up to range 25 for ENERIUM 50

24.2 Load curves

Average values	
Pt Gen, Pt Rec	•
Qcad1 Qcad2, Qcad3, Qcad4	•
St Gen, St Rec	•
On/Off1, On/Off2 Inputs	•

24.3 Alarms

1 sec Values	
V1, V2, V3, Vearth	٠
U12, U23, U31	٠
l1, l2, l3, ln	٠
Pt	•
Qt	•
St	•
FPt	•
Cos ¢t	٠
Tan ø	٠
Frequency	٠
Unbalance U	٠
3 time meters: network presence, loaded, Aux source.	•
Average values	
Pt Gen, Qt Rec	٠
Qt Gen, Qt Rec	•
St	•

24.4 Analog outputs

1 sec Values	
V1, V2, V3, Vearth	•
U12, U23, U31	•
l1, l2, l3, ln	•
P1, P2, P3	•
Pt	•
Q1, Q2, Q3	•
Qt	•
S1, S2, S3	•
St	•

FP1, FP2, FP3	•
FPt	•
Cos ¢1, Cos ¢2, Cos ¢3	•
Cos ¢t	•
Tan ϕ	•
Frequency	•

24.5 Recording curves

(not available on ENERIUM 50)

1 sec Values	
I1, I2, I3, In	٠
Pt	•
Qt	•
St	٠
FPt	•
Unbalance U	•
THD V1, V2, V3	•
THD U12, U23, U31	•
THD 11, 12, 13	٠
Average values	
V1, V2, V3,	•
I1, I2, I3, In	•
P1 Gen, P1 Rec, P2 Gen, P2 Rec, P3 Gen, P3 Rec, Pt Gen, Pt Rec	•
FP1 Gen, FP1 Rec, FP2 Gen, FP2 Rec, FP3 Gen, FP3 Rec, FPt Gen, FPt Rec	•
Cosø1 Gen, Cosø1 Rec, Cosø2 Gen, Cosø2 Rec, Cosø3 Gen, Cosø3 Rec, Cosøt Gen, Cosøt Rec	•
Frequency	•
Peak factor V1, V2, V3	•
Peak factor I1, I2, I3	•
THD U12, U23, U31	•
THD I1, I2, I3	•
THD V1, V2, V3	•

24.6 Electrical

24.6.1 Display

- LCD display, monochrome (128 lines, 160 pixels), backlit by white LEDs. Contrast adjustable by local or remote communication or via the local keyboard.
- On the main menu, display of 6 to 8 icons enabling the easy selection of variables to be visualised.
- Display of V, U, I, F, P, Q, S, FP, Tanφ, THD variables, energies and harmonics.
- Display of pictograms (alarm, phass order, communication, automatic scrolling, inductive network, capacitive network, generator network),
- Display of texts dans 5 languages (German, English, Spanish, French, Italian).
- Forced setting of the screen possible after activation by local or remote communication.
- Automatic scrolling of screens specific to the user.

24.6.2 Keys

- "OK" key for validation of choice.
- Joystick (4 ▲▼◀► keys) for selection and navigation.

24.6.3 Voltage measurement inputs

Variable	Range
Nominal ground voltage	57.7 / 230 V
Nominal line voltage	100 V / 400 V
Maximum line voltage	$^{120}_{^{+20\%}}$ V / 480V (which is 100/400V
Peak factor	2
Frequency	42,5Hz (which is 50Hz ^{-15%}) to 69Hz (which is 60Hz ^{+15%})
Maximum measured line voltage	650.0kV (primary side view from the client transformer)
Permanent Surge	Twice the line voltage of nominal input, which is 800V.
Consumption per phase	<0.2 VA
Impedance	500 kΩ
Non-detachable terminals	5 connection points. Screw terminals, with mobile cage.
	Connection of rigid or flexible wires of section 0 to 2.5 mm ² (22- 14 AWG).
	Maximum acceptable coupling torque on the terminal : 0.4 Nm.
Setting range	TP primary from 100 V to 650 000 V in steps of 1 V.
	TP secondary from 100 V to 480 V in steps of 1 V.

24.6.4 Current measurement inputs

Variable	Range
Nominal input current	5 A
Maximum input current	6.5A (which is 5A ^{+30%})
Peak factor	3
Frequency	42,5Hz (which is 50Hz $^{\cdot 15\%})$ to 69Hz (which is 60Hz $^{\cdot 15\%})$
Maximum measured current	25,0 kA (primary side view from the client transformer).
Consumption	<0.15 VA
Excees current	50 times the nominal current, which is 250A, for a duration of 1s supported 5 times to follow every 5 minutes.
Three-phase maximum active power	1.2 GW (primary side view from the client transformer).
Non-detachable terminals	6 connection points. Screw terminals, with mobile cage.
	Connection of rigid or flexible wires of section 0.5 to 6mm ² (20-10 AWG).
	Maximum acceptable Coupling torque on the terminal: 0.8 Nm.
Setting range	TP primary from 1 A to 25 000 A in steps of 1 A.
	TP secondary from 1 A to 5 A in steps of 1 A.

24.6.5 RS485 Output Communication

The RS485 card cannot be present at the same time as the Ethernet card.

Item	Characteristics
Protocol	ModBus RTU mode.
Speed	2400, 4800, 9600, 19 200 and 115 200 Bauds.
Parity	without, even or odd.
Number of stop bits	1 or 2
Connection	2 fils + shielding, half duplex
Detachable terminals	3 connection points. Screw terminals.
	Connection of rigid or flexible wires of section 0.2 to 2.5 mm ² (22-14 AWG)
	Maximum acceptable Coupling torque on the terminal : 0.4 Nm.

Ethernet Output

The Ethernet card cannot be present at the same time as the RS485 card.

Item	Characteristics
Protocol	ModBus / TCP in RTU mode.
Speed	10/100 Base T
Maximum length	Transmission over 100 m max.
Connection	8 points RJ45 socket.

Optical Interface

Item	Characteristics
Protocol	ModBus in RTU mode.
Transmission Format	Fixed at the speed of 38400 bauds, 1 start bit, 8 data bits, without parity, 1 stop bit and a reversal time of 0 ms. Responds to all the slave numbers between 1 and 247.
Digital input/output	Optical (infrared) ensuring optical bidirectional transmission.
Connection	By optical cord without electrical contact.

24.6.6 Auxiliary supply source

Source	Characteristics
A.C/D.C (high tension) (*)	80 Vac/dc (or 100 Vac/dc ^{-20%}) to 265 Vac/dc (or 230 Vac/dc ^{+15%}).
	Frequency between 42.5 Hz (or 50 Hz $^{\cdot15\%}$) and 69 Hz (or 60 Hz $^{\cdot15\%}$) in A.C.
Low tension D.C (*)	19 Vdc (or 24 Vdc ^{-20%}) to 58 Vdc (or 48 Vdc ^{+20%}).
Consumption	<15 VA – 10 W.
Non-detachable terminals	2 connection points. Screw terminals, with mobile cage.
	Connection of rigid or flexible wires of section 0 to 2.5 mm ² (22-14 AWG).
	Maximum acceptable coupling torque on the terminal : 0.4 Nm.

(*): Either model. Supply mounted by the manufacturer

24.6.7 Information retention

The information saved after a supply break is the:

- Parametering
- Average values
- Minimum values
- Maximum values
- Energy meters
- Pulse meters
- Event files
- Time meters
- Load curves
- Recording curves.

Item	Characteristics
Information retention	10 years at 25 °C.
Retention date/time	5 days.

24.7 Optional cards

24.7.1 Terminal characteristics

Item	Characteristics
Number of admissible optional cards:	1 per <i>ENERIUM</i> .
Detachable terminals	2 x 2 connection points. Screw terminals.
	Connection of rigid or flexible wires of section 0 to 2.5 mm ² (22-14 AWG).
	Maximum acceptable coupling torque on the terminal : 0.4 Nm.

24.7.2 2 output analog card

Item	Characteristics
Number of outputs	2.
Output Signal	D.C.
Maximum resistive load	10 V / I output
Maximum capacitive load	0.1 μF.
Response time	500 ms.
Isolation between outputs	1 kV – 1 min.
Limits (min and max)	-22 mA, $\leq I_{output} \leq$ + 22 mA.

24.7.3 2 On/Off inputs card

Item	Characteristics
Number of inputs	2.
Input Signal	Continuous.
Amplitude of the input signal	Between 19.2 Vdc (or 24 Vdc $^{-}$ $^{20\%})$ and 72 Vdc (or 60 Vdc $^{+20\%}).$
Level Interpretation	Amplitude < 5 V: the logic level read is "0".
	Amplitude > 10 V: the logic level read is "1".
	The signal width should be at the minimum 30 ms.
Absorbed power	<0.5 W per On/Off input.
Isolation between outputs	2.2 kV – 1 min.
Type of protection	Optocoupler.

24.7.4 2 On/Off output card

Item	Characteristics
Number of outputs	2.
Maximum admissible current	≤ 100 mA.
Output signal	D.C. signal varying from 19.2Vdc (or 24 Vdc $^{-20\%}$) to 265 Vdc (or 220 Vdc $^{+20\%}$).
	A.C. frequency signal between 42.5 Hz and 69 Hz, varying from 19.2 Vac (or 24 Vac $^{-20\%}$) to 265 Vac (or 230 Vac $^{+15\%}$).
Output in pulsed mode	Complies with CEI 62053-31 (1998) standard.
Isolation between outputs	2,2 kV – 1 min.
Type of contact	Dry contact.
Type of protection	Static relay (bidirectional MOS transistor).

24.7.5 1 On/Off input and 1 On/Off output card

Electrical characteristics identical to those of the "1 On/Off input" and "1 On/Off output" cards described in paragraph 24.7.3 on page 71 and 24.7.4 on page 72.

The differences are found in the number of inputs and outputs available on the card, i.e.:

- Number of On/Off inputs: 1

- Number of On/Off outputs: 1

24.8 Metrology

(A 23°C ±2°C, 50Hz (except for variable F))

 V_{nom}/U_{nom} = 230 V / 400 V for TP secondary > 100 V

 V_{nom}/U_{nom} = 57,7 V / 100 V for TP secondary = 100 V

 $I_{nom} = 5A$

Variable	Conditions	Accuracy
V	V between [10% and 120%] of V_{nom}	±0,2% of the measurement ±0,02% of V _{nom}
U	U between [10% and 120%] of U_{nom}	\pm 0,2% of the measurement \pm 0,02% of U _{nom}
I	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,2% of the measurement ±0,02% of I _{nom}
F	F between [42,5Hz and 69Hz]	± 0,1Hz
СН	-	\pm 250ppm
Р	FP equals 1 V between [99% and 101%] of V _{nom}	+0.5% of the
		±0,5% of the measurement ±0,02% of P _{nom}

	FP between [0.5 inductive and 0.8 capacitive] V between [99% and 101%] of V _{nom}	
	I between [10% and 130%] of Inom	\pm 0,5% of the measurement \pm 0,05% of P _{nom}
Q	Sin (ϕ) = 1 V between [99% and 101%] of V _{nom}	
	I between [5% and 130%] of I_{nom}	±1% of the measurement
	I between [2% and 5%[of I _{nom}	±1,5% of the measurement
	Sin (ǫ) lying between [0.5 inductive and 0.5 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [10% and 130%] of I_{nom}	±1% of the measurement
	I between [5% and 10%[of I _{nom}	±1,5% of the measurement
	Sin (\$\$)between [0,25 inductive and 0,25 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [10% and 130%] of I _{nom}	±3,5% of the measurement
S	V between [99% and 101%] of V_{nom}	±0,5% of the measurement
	I between [5% and 130%[of $I_{\mbox{\scriptsize nom}}$	$\pm 0,02\%$ of S_{nom}
$Cos(\phi)$	$Cos(\phi)$ between [0.5 inductive and 0.5 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,02 points
	Cos(ϕ)between [0.2 inductive et 0.2 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,05 points
Tan(ø)	Tan(ϕ)between [1.732 inductive and 1.732 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,02 points
	Tan(ϕ)between [4.90 inductive and 4.90 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,05 points
Variable	Conditions	Accuracy
----------	--	-------------------------------
FP	FP between [0.5 inductive and 0.5 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,02 points
	FP between [0.2 inductive and 0.2 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	±0,05 points
Active E	FP equals 1 V between [99% and 101%] of V _{nom}	
	I between [5% and 130%] of I_{nom}	\pm 0.5% of the measurement
	I between [1% and 5%] of I _{nom}	± 1% of the measurement
	FP between [0.5 inductive and 0.8 capacitive]	
	V between [99% and 101%] of V _{nom}	
	I between [10% and 130%] of I_{nom}	\pm 0.6% of the measurement
	I between [2% and 10%[de $I_{\mbox{\scriptsize nom}}$	± 1% of the measurement
Reactive	Sin (φ) = 1	
E	V between [99% and 101%] of V_{nom}	
	I between [5% and 130%] of I _{nom} = 5 A	\pm 1% of the measurement
	I between [2% and 5%[of $\mathrm{I}_{\mathrm{nom}}$	\pm 1.5% of the measurement
	FP between [0.5 inductive and 0.5 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [10% and 130%] of I _{nom}	± 1% of the measurement
	I between [5% and 10%[of I _{nom}	\pm 1.5% of the measurement
	FP between [0.25 inductive and 0.25 capacitive]	
	V between [99% and 101%] of V_{nom}	
	I between [10% and 130%] of I _{nom}	\pm 3% of the measurement

Variable	Conditions	Accuracy
Effective E	V between [99% and 101%] of V_{nom}	\pm 0.5% of the measurement
	I between [5% and 130%] of $\mathrm{I}_{\mathrm{nom}}$	
Harmonic s per range	FP equalsl 1	± 0.5 points
	V between [99% and 101%] de V_{nom}	
	I between [5% and 130%] of $I_{\mbox{\scriptsize nom}}$	
THD	FP equals 1	± 0.5 points
	V lying between [99% and 101%] of V _{nom}	
	I lying between [5% and 130%] of I _{nom}	
Time	T = 23 °C	± 20ppm
		(or \pm 52 seconds over 30 days)

24.9 Mechanical

Overall Dimensions (mm) :	96*96*55 (H, L, D)
Weight:	<600 g.
Assembly:	On panel according to DIN 43700.
Format:	DIN 96 x 96.
Dimension of the cutting:	92 x 92 mm.
Fastening:	by angle fastening (panel assembly).
Name plate	on the rear part of the equipment.
Device number	on the rear part of the equipment.

Figure 24-1 : dimensions in millimeters....

24.10 Environmental constraints

24.10.1 Climatic constraints

Operating temperature:	-10 to 55 °C.
Operating humidity:	Up to 95% at 40 °C.
Storage temperature:	-25 to +70 °C.

24.10.2 Safety constraints

Level of pollution :	2
Resistance to fire:	Complies with UL94 standard for the severity level V1.
Installation category	III

24.10.3 Mechanical constraints

Protection index :	According to CEI 60529, for the following severity level: IP 51 Index (front face). IP 20 Index (rear face).
Mechanical shocks:	According to CEI 61010-1.
Vibrations:	CEI 60068-2-6 (A method).
Free fall with packing	From a height of 1 m, according to the NF H 0042- 1 standard.

24.10.4 Electromagnetic compatibility

According to the CEI 61326-1 standard

24.11 Accessories

Optical cable:	For local communication; Connection to a PC by minimum USB 1.1 plug. Cable sold separately.
Software:	Configuration software <i>E.view</i> .

25. MEASURED VARIABLES

This chapter presents the mathematical formulas used for the calculation of the different measurements by *ENERIUM*.

25.1 Ground voltage

The measurements are performed from the "10-period" ground voltage measurements for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas are:

$$V_{L}[1s] = \sqrt{\frac{1}{5} \times \sum_{1}^{5} V_{L}^{2}[10T]} \quad (\text{For F=50Hz}) \quad \text{or}$$

$$V_{L}[1s] = \sqrt{\frac{1}{5} \times \sum_{1}^{5} V_{L}^{2}[12T]} \quad (\text{For F=60Hz})$$

$$\text{With} V_{L}[10T] = \sqrt{\frac{1}{10} \times \sum_{1}^{10} V_{L}^{2}[T]}, \quad V_{L}[12T] = \sqrt{\frac{1}{12} \times \sum_{1}^{12} V_{L}^{2}[T]}$$
and
$$V_{L}[T] = \sqrt{\frac{1}{128} \times \sum_{1}^{128} v_{L}^{2}}$$

$$L = 1, 2, 3, T$$

25.2 Line voltages

The measurements are performed from the "10-period" measurements of line voltages for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas are:

$$U_{ab}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} U_{ab}^{2}[10T] \quad (\text{For } \text{F=50Hz}) \quad \text{or}$$

$$U_{ab}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} U_{ab}^{2}[12T] \quad (\text{For } \text{F=60Hz})$$
With $U_{ab}[10T] = \sqrt{\frac{1}{10}} \times \sum_{1}^{10} U_{ab}^{2}[T]$,
 $U_{ab}[12T] = \sqrt{\frac{1}{12}} \times \sum_{1}^{12} U_{ab}^{2}[T]$
and $U_{ab}[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} (v_{a} - v_{b})^{2}$
ab = 12, 23 ou 31

25.3 Current

The measurements are performed from the "10-period"" current measurements for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas are:

$$I_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} I_{L}^{2}[10T]} \text{ (For F=50Hz) or}$$

$$I_{L}[1s] = \sqrt{\frac{1}{5}} \times \sum_{1}^{5} I_{L}^{2}[12T]} \text{ (For F=60Hz)}$$
With $I_{L}[10T] = \sqrt{\frac{1}{10}} \times \sum_{1}^{10} I_{L}^{2}[T]}$
and $I_{L}[12T] = \sqrt{\frac{1}{12}} \times \sum_{1}^{12} I_{L}^{2}[T]}$

$$L = 1, 2, 3, N$$
For L=1,2 et 3 : $I_{L}[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} i_{L}^{2}$
And for L = N $I_{L}[T] = \sqrt{\frac{1}{128}} \times \sum_{1}^{128} (i_{1}+i_{2}+i_{3})^{2}}$

25.4 Active power

The measurements are performed from the "10-period" measurements of active powers for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas are:

$$P_{L}[1s] = \frac{1}{5} \times \sum_{1}^{5} P_{L}[10T] \text{ (For F=50Hz) or}$$

$$P_{L}[1s] = \frac{1}{5} \times \sum_{1}^{5} P_{L}[12T] \text{ (For F=60Hz)}$$
With $P_{L}[10T] = \frac{1}{10} \times \sum_{1}^{10} P_{L}[T]$,
$$P_{L}[12T] = \frac{1}{12} \times \sum_{1}^{12} P_{L}[T]$$
and $P_{L}[T] = \frac{1}{128} \times \sum_{1}^{128} v_{L} \times i_{L}$

L = 1, 2, 3.

P[1s] is the sum of active powers at the second : $P[1s] = P_1[1s] + P2[1s] + P3[1s]$

25.5 Transit direction of powers

The products measure the transit direction of the powers "at the second".

- If P[1s] is positive, the transit direction of the powers is the Receiver.
- If P[1s] is negative, the transit direction of the powers is the Generator.

25.6 Reactive power

The products measure the reactive powers "at the second" on each of the $Q_1[1s]$, $Q_2[1s]$ and $Q_3[1s]$ phases, as well as the three-phase reactive power "at the second" Q[1s].

The measurements are performed from other measurements, according to the following formula:

$$Q_L[1s] = Signe Q_L[1s] \sqrt{S_L^2[1s] - P_L^2[1s]}$$

L = 1, 2 or 3

 $SigneQ_{L}[1s]$ is the sign of the reactive power, developed from the simplified Hilbert transformation.

For F = 50 Hz :

$$SigneQ_{L}[1s] = \text{Sign of } \sum_{i=1}^{6400} \sqrt{v_{(i-1)} * (i_{1} - i_{(i-2)})}$$

For F = 60 Hz :

$$SigneQ_{L}[1s] = \text{Sign of } \sum_{i=1}^{7800} \sqrt{i_{(i-1)} * (i_{1} - i_{(i-2)})}$$

Q[1s] is the sum of "at the second" reactive powers Q[1s] = $Q_1[1s] + Q_2[1s] + Q_3[1s]$.

25.7 Apparent Power

The products measure the apparent powers "at the second" on each of the $S_1[1s]$, $S_2[1s]$ and $S_3[1s]$ phases, as well as the three-phase apparent powers "at the second" S[1s].

The measurements are performed from other measurements, according to the following formula:

$$S_L[1s] = V_L[1s] \times I_L[1s]$$
. L = 1, 2 or 3

S[1s] is the sum of apparent powers "at the second" S[1s] = $S_1[1s] + S_2[1s] + S_3[1s]$.

25.8 Power factor

The products measure the power factors "at the second" on each of the $FP_1[1s]$, $FP_2[1s]$ and $FP_3[1s]$ phases, as well as the three-phase power factor "at the second" FP[1s].

The measurements are performed from other measurements, according to the following formula.

$$FP_L[1s] = \frac{P_L[1s]}{S_L[1s]}$$
 L = 1, 2, 3 or nothing for the three-

phase.

The quadrant is associated to each of these variables. If $P_x[1s]$ and $Q_x[1s]$ (x = 1, 2, 3 or nothing for the threephase variable) are of the same sign, then the quadrant is selfic; otherwise, it is capacitive.

25.9 Cos(φ)

The products measure the $\cos(\phi)$ "at the second" on each of the $\cos(\phi_1)[1s]$, $\cos(\phi_2)[1s]$, $\cos(\phi_3)[1s]$ phases, as well as the global $\cos(\phi)$ "at the second" called $\cos(\phi_q)[1s]$.

The $\mbox{cos}(\phi)$ are calculated according to the following formula :

$$\cos(\varphi_L)[1s] = \frac{1}{5} \times \sum_{1}^{5} \cos(\varphi_L)[10T] \text{ (For F=50Hz) OR}$$
$$\cos(\varphi_L)[1s] = \frac{1}{5} \times \sum_{1}^{5} \cos(\varphi_L)[12T] \text{ (For F=60Hz)}$$

L = 1, 2 and 3

and

 $\cos(\varphi_{globa})[1s] = \frac{\cos(\varphi_{1})[1s] + \cos(\varphi_{2})[1s] + \cos(\varphi_{3})[1s]}{3}$

with

 $\cos(\varphi_L)[10T] = \cos(Angle V_L Fondamental[10T] - Angle I_L Fondamental[10T])$ and

 $\cos(\phi_L)[12T] = \cos(Angle _V_L _Fondamental[12T] - Angle _I_L _Fondamental[12T])$

The quadrant is associated to each of these variables.

- If the angle φ is between 0° and 90° or between 180° and 270°, then the quadrant is selfic.
- If the angle φ is between 90° and 180° or between 270° and 360°, then the quadrant is capacitive.

25.10 Peak factor

The measurements are performed from the "10-period" active power measurements for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas are:

25.10.1 For the voltages

$$FC_{VL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{VL}[10T]$$
 (For F=50Hz) or

$$FC_{VL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{VL}[12T]$$
 (For F=60Hz)

with $FC_{VL}[10T] = \frac{Vpeak[10T]}{V[10T]}$

and
$$FC_{VL}[12T] = \frac{Vpeak[12T]}{V[12T]}$$

with
$$V[10T] = \sqrt{\frac{1}{1280} \times \sum_{1}^{1280} v_L^2}$$

and
$$V[12T] = \sqrt{\frac{1}{1536} \times \sum_{1}^{1536} v_L^2}$$

with $V peak[10T] = max[abs(v_L)]$

and $V peak[12T] = max[abs(v_L)]$

L = 1, 2, 3

25.10.2 For the currents

$$FC_{II}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{II}[10T]$$
 (For F=50Hz)

OR
$$FC_{IL}[1s] = \frac{1}{5} \times \sum_{1}^{5} FC_{IL}[12T]$$
 (For F=60Hz)

with
$$FC_{IL}[10T] = \frac{Ipeak[10T]}{I[10T]}$$

and $FC_{IL}[12T] = \frac{Ipeak[12T]}{I[12T]}$

with

$$I[10T] = \sqrt{\frac{1}{1280} \times \sum_{1}^{1280} i_{L}^{2}} \text{ and } I[12T] = \sqrt{\frac{1}{1536} \times \sum_{1}^{1536} i_{L}^{2}}$$

With $Ipeak[10T] = \max[abs(i_L)]$ and $Ipeak[12T] = \max[abs(i_L)]$

25.11 Tan(φ)

The product measures the global "at the second" $\text{Tan}(\phi)$.

The quadrant is associated with each of these variables. If P[1s] and Q[1s] (three-phase variable) are of the same sign, then the quadrant is selfic, otherwise it is capacitive.

$$tg(\varphi_g)[1s] = \frac{Q[1s]}{P[1s]}$$

25.12 Frequency

The measurements are performed from the measurements of "10-period" active powers for a network frequency parametered at 50Hz and "12-period" for a network frequency parametered at 60Hz. The formulas ares:

 $F[1s] = F_sampling \mathbf{x}$

10T Nbr Samples on 10T

With the following functional relationship: F_sampling = 128 * F[1s]

25.13 Harmonics

The products measure the harmonic rate H_x "at the second", range by range, on the three ground voltages $V_1,$ $V_2,$ $V_3,$ on the three line voltages $U_{12},$ $U_{23},$ U_{31} and on the three currents $I_1,$ $I_2,$ $I_3,$ in compliance with the CEI 61000-4-7 standard (edition 2). The measurements are performed from the harmonics hx[10T], according to the formula :

$$H_{x}[1s] = \sqrt{\frac{\sum_{1}^{5} h_{x}^{2}[10T]}{\sum_{1}^{5} h_{1}^{2}[10T]}}$$

When the ground voltage, line voltage or current is equal to 0, then the harmonic rate of the concerned variable is not calculated and its value is 0.

In the case of *ENERIUM 50*, the measurement is performd up tol range 25. In the case of *ENERIUM 150*, the measurement is performed up to range 50.

25.14 Harmonics rate

The products measure the harmonic rate "at the second" on the three ground voltages $THD_{V1}[1s]$, $THD_{V2}[1s]$, $THD_{V3}[1s]$, on the three line voltages $THD_{U12}[1s]$, $THD_{U23}[1s]$ and $THD_{U31}[1s]$, as well as on the three currents $THD_{I1}[1s]$, $THD_{I2}[1s]$ and $THD_{I3}[1s]$, according to the definition of the CEI 60050-551-20 standard.

The measurements are performed from the range by range harmonics "at the second", calculated according to the following formula:

$$THD = 100 \times \sqrt{\frac{\sum_{n=2}^{50} H_n^2}{H_1^2}}$$

When the ground voltage, line voltage or the current is equal to 0, the harmonic rate of the concerned variable is not calculated and its value is 0.

25.15 Energy and Energy metering

The products calculate "at the second" the active energy EP[1s], reactive energy EQ[1s] and the apparent energy ES[1s].

The measurements are performed from other measurements already calculated, according to the following formula:

$$EX[1s] = M[1s] \times \frac{N_{ech}}{3600 \times F_{ech}} . \quad X = P, Q \text{ or } S.$$

The energies are measured in absolute values, they are thus always positive.

M is the variable measured "at the second" (Active, Reactive or Apparent power). N_{ech} is the number of samples collected during the sampling window. F_{ech} is the sampling frequency.

According to the quadrant, the energy measured is added in an total meter.

- If P[1s] is positive, the EP[1s] energy measurement is added to the active energy meter in receiver mode CEP_R and the measurement of ES[1s] energy is added to the apparent energy meter in receiver mode CES_R.
- If P[1s] is negative, the EP[1s] energy measurement is added to the active energy meter in generator mode CEP_G and the measurement of ES[1s] energy is added to the apparent energy meter in generator mode CES_G.
- If P[1s] and Q[1s] are positive, the EQ[1s] energy measurement is added to the reactive energy meter of the first quadrant CEQ₁. If P[1s] is negative and Q[1s] is positive, the EQ[1s] energy measurement is added to the reactive energy meter of the second quadrant CEQ₂. If P[1s] is positive and Q[1s] is negative, the EQ[1s] energy measurement is added to the reactive energy meter of the third quadrant CEQ₄. If P[1s] and Q[1s] are negative, the EQ[1s] energy measurement is added to the reactive energy meter of the third quadrant CEQ₄. If P[1s] and Q[1s] are negative, the EQ[1s] energy measurement is added to the reactive energy meter of the fourth quadrant CEQ₃.

It is possible to reset all the meters using a command word on the local or remote communication. It is also possible to reinitialize a meter independently from another, with a value, also using a command word on the local or remote communication.

25.16 Unbalance

The products calculate every second the voltage unbalance rate called Des[1s], from the measurements of the line voltages "at the second" and according to the following algorithm:

Thus variables Fact1 and Fact2, such as:

Fact
$$1 = U_{12}^{2}[1s] + U_{23}^{2}[1s] + U_{31}^{2}[1s]$$

Fact $2 = U_{12}^{4}[1s] + U_{23}^{4}[1s] + U_{31}^{4}[1s]$

Or the variable Fact3, such as:

If $(3 \times Fact 1^2 - 6 \times Fact 2) < 0$ Then Fact 3 = 0

Else $Fact 3 = \sqrt{3 \times Fact 1^2 - 6 \times Fact 2}$

Or the variable Fact4, such as:

If
$$(6 \times Fact 2 - 2 \times Fact 1^2) < 0$$

Then $Fact 4 = 0$

Else Fact 4 = $\sqrt{6 \times Fact 2 - 2 \times Fact 1^2}$

If
$$Fact 4 > 0$$
 Then
 $Des[1s] = 1000 \times \frac{(Fact1 - Fact3)}{Fact4}$

Else Des[1s]=0

25.17 Phase order

This function executes the cabling test, by verification of the phase order on the voltage lines. The calculation is performed over 3 periods and every 10 periods of the input reference signal. If the phase order is incorrect, as pictogram lights up in the lower strip of the visualization screens.

25.18 Time meter

The products integrate three time meters.

- The first time meter totals the time during which the product is active, i.e. the period during which the auxiliary source is present. This time meter is called "Auxiliary source presence" time meter.
- The second time meter totals the time during which the "one second" measurement of at least one ground voltage, from among V₁[1s], V₂[1s] et V₃[1s], is different form zero. This time meter is called "network presence" time meter.
- The third time meter totals the time during which the "one second" measurement of at least one current from among I₁[1s], I₂[1s] et I₃[1s], is different from zero. This time meter is called "load presence" time meter.

25.19 Average variable

The averages are sliding averages, updated every tenth of the integration duration. The integration duration is common to all variables. This integration duration is chosen from among the following predefined values: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60 minutes.

All the average values can be updated by writing a command word on the local or remote communication. The reinitialization consists of placing the 0 value in the variable, with the exception of averages of the variables of type FP_x and cos (ϕ_x), for which the reinitialization consists of placing the value 1.

25.19.1 Quadratic averages

The products calculate the quadratic averages of the "at the second" variables in the four quadrants. These averages are the following:

- V1[aver], V2[aver], V3[aver]
- U12[aver], U23[aver], U31[aver]
- I1[aver], I2[aver], I3[aver], IN[aver]

The averages listed above are calculated according to the following formula:

$$X[moy] = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} X[1s]_{i}^{2}}$$

25.19.2 Arithmetic averages (A)

The products calculate the arithmetic averages of "at the second" variables in the four quadrants. These averages are the following:

- S1[aver], S2[aver], S3[aver], S[aver]
- F[aver], Des[aver]
- THDV1[aver], THDV2[aver], THDV3[aver]
- THDU12[aver], THDU23[aver], THDU31[aver]
- THDI1[aver], THDI2[aver], THDI3[aver]

- FCV1[aver], FCV2[aver], FCV3[aver]
- FCI1[aver], FCI2[aver], FCI3[aver]

The averages listed above are calculated according to the following formula:

$$X[moy] = \frac{1}{N} \times \sum_{i=1}^{N} X[1s]_i$$

25.19.3 Arithmetic averages (B)

The products calculate the arithmetic averages of "at the second" variables in the two quadrants in receiver mode. These averages are the following:

- P₁R[aver], P2R[aver], P3R[aver], PR[aver]
- Q1R[aver], Q2R[aver], Q3R[aver], QR[aver]

In the case where $P_x[1s]$ is positive or nil (receiver mode), it is the value measured "at the second" which is taken into account in the average. When $P_x[1s]$ is negative (generator mode), it is the value 0 which is taken into account in the average.

25.19.4 Arithmetic averages (C)

The products calculate the arithmetic averages of "at the second" variables in the two quadrants in receiver mode. These means are the following:

- FP1R[aver], FP2R[aver], FP3R[aver], FPR[aver]
- cos(φ1)R[aver], cos(φ2)R[aver], cos(φ3)R[aver], cos(φg)R[aver]

In the case where $P_x[1s]$ is positive or nil (receiver mode), it is the value measured "at the second" which is taken into account in the average. When $P_x[1s]$ is negative (generator mode), it is the value 1 which is taken into account in the average.

25.19.5 Arithmetic averages (D)

The products calculate the arithmetic average of "at the second" variables in the two quadrants in generator mode. These averages are the following:

- P₁G[aver], P2G[aver], P3G[aver], PG[aver],
- Q1G[aver], Q2G[aver], Q3G[aver], QG[aver]

In the case where $P_x[1s]$ is negative (generator mode), it is the value measured "at the second" which is taken into account in the average. When $P_x[1s]$ is positive or nil (receiver mode), it is the value 0 which is taken into account in the average.

25.19.6 Arithmetic means (E)

The products calculate the arithmetic averages of "at the second" variables in the two quadrants in generator mode. These means are the following:

- FP1G[aver], FP2G[aver], FP3G[aver], FPG[aver]
- cos(φ1)G[aver], cos(φ2)G[aver], cos(φ3)G[aver], cos(φg)G[v]

In the case where $P_x[1s]$ is negative (generator mode), it is the value measured "at the second" which is taken into account in the average. When $P_x[1s]$ is positive or nil

(receiver mode), it is the value 1 which is taken into account in the average.

25.20 Calculation of minima

Each minimum is timestamped (date and time of detection of the minimum). All the minima can be reinitialized by writing a command word over the local or remote communication. The reinitialization consists of placing the value 0 in the variable, with the exception of the minima of variables of type FP_x and cos (ϕ_x), for which the reinitialisation consists of placing the value 1.

25.21 Minima of variables

25.21.1 Minima (A)

The products calculate the minima of "at the second" variables in the four quadrants. These minima are the following:

V₁[min], V2[min], V3[min]

- U12 [min], U23[min], U31[min]
- I1[min], I2[min], I3[min], IN[min]
- F[min]

The minima listed above are developed according to the following algorithm:

Si (X[1s] < X[min])

Then $(X[\min] = X[1s])$

with $X = U_{ab}$, I_L ou F

ab=12, 23 or 31

L = 1, 2 or 3.

25.21.2 Minima (B)

The products also calculate the minima of "at the second" variables in the two quadrants corresponding to the receiver mode. These minima are the following:

- P₁R[min], P₂R[min], P3R[min], PR[min]
- Q1R[min], Q2R[min], Q₃R[min], QR[min]

The minima listed above are developed according to the following algorithm:

If (X[1s] < XR[min]) AND $(P[1s] \ge 0)$

Then (XR[min] = X[1s]) with X = P or Q.

25.21.3 Minima (C)

The products also calculate the minima of "at the second" variables in the two quadrants corresponding to the generator mode. These minima are the following:

- P₁G[min], P₂G[min], P₃G[min], PG[min],
- Q₁G[min], Q₂G[min], Q₃G[min], QG[min]

The minima listed above are developed according to the following algorithm:

If (X[1s] < XG[min]) AND (P[1s] < 0)

Then $(XG[\min] = X[1s])$ with X = P or Q.

25.22 Minima of average variables

25.22.1 Minima (A)

The products also calculate the minima of average variables in the two quadrants corresponding to the receiver mode. These minima are the following:

- FP1R[min aver], FP2R[min aver], FP3R[min aver], FPR[min v]
- cos(φ1)R[min aver], cos(φ2)R[min aver], cos(φ3)R[min aver], cos(φg)R[min aver]

The minima listed above are developed according to the following algorithm:

If (X[moy] < XR[minmoy]) AND $(P[moy] \ge 0)$

Then $(XR[\min moy] = X[moy])$ with X = FP or $\cos(\varphi_g)$.

25.22.2 Minima (B)

The products also calculate the minima of average variables in the two quadrants corresponding to the generator mode. These minima are the following:

- FP₁G[min aver], FP2G[min aver], FP3G[min aver], FPG[min aver]
- cos(φ1)G[min aver], cos(φ2)G[min aver], cos(φ3)G[min aver], cos(φg)G[min aver]

The minima listed above are developed according to the following algorithm:

If (X[moy] < XG[minmoy]) AND (P[moy] < 0)

Then $(XG[\min moy] = X[moy])$ with X = FP or $\cos(\varphi)$.

25.23 Calculation of maxima

Each maximum is timestamped (date and time of detection of the maximum). All the maxima can be reinitialized by writing a command word over the local or remote communication. The reinitialization consists of placing the value 0 in the variable, with the exception of the maxima of variables of type FP_x and cos (ϕ_x), for which the reinitialization consists of placing the value 1.

25.24 Maxima of variables

25.24.1 Maxima (A)

The products calculate the maxima of "at the second" variables in the four quadrants. These maxima are the following:

- V₁[max], V2[max], V3[max]
- U12[max], U23[max], U31[max]
- I1[max], I2[max], I3[max], IN[max]
- F[max]
- S1[max], S2[max], S3[max], S[max]

The maxima listed above are developed according to the following algorithm:

 $|\mathsf{f}(X[1s] > X[\max])|$

Then $(X[\max] = X[1s])$

with $X = U_{ab}$, I_L , F or S ab=12, 23 or 31 L = 1, 2 or 3.

25.24.2 Maxima (B)

The products also calculate the maxima of "at the second" variables in the two quadrants corresponding to receiver mode. These maxima are the following

- P₁R[max], P₂R[max], P3R[max], PR[max]
- Q1R[max], Q2R[max], Q3R[max], QR[max]

The maxima listed above are developed according to the following algorithm

If (X[1s] > XR[max]) AND $(P[1s] \ge 0)$

Then (XR[max] = X[1s]) with X = P or Q.

25.24.3 Maxima (C)

The products also calculate the maxima of "at the second" variables in the two quadrants corresponding to generator mode. These maxima are the following:

- P1G[max], P2G[max], P3G[max], PG[max],
- Q1G[max], Q2G[max], Q3G[max], QG[max]

The maxima listed above are developed according to the following algorithm:

If (X[1s] > XG[max]) AND (P[1s] < 0)

Then (XG[max] = X[1s]) with X = P or Q.

25.25 Maxima of average variables

25.25.1 Maxima (A)

The products calculate the maxima of average variables in the four quadrants. These maxima are the following:

V₁[max aver], V2[max aver], V3[max aver]

- U12[max aver], U23[max aver], U31[max aver]
- I1[max aver], I2[max aver], I3[max aver], IN[max aver]
- Des[aver]
- THDV1[aver], THDV2[aver], THDV3[aver]
- THDU12[aver], THDU23[aver], THDU31[aver]
- THDI1[aver], THDI2[aver], THDI3[aver]
- FCV1[aver], FCV2[aver], FCV3[aver]
- FCI1[aver], FCI2[aver], FCI3[aver]
- S[max aver]

The maxima listed above are developed according to the following algorithm:

If (X[moy] > X[maxmoy])

Then $(X[\max moy] = X[moy])$

25.25.2 Maxima (B)

The products also calculate the maxima of average variables in the two quadrants corresponding to the receiver mode. These maxima are the following:

- PR[max aver], QR[max aver],
- FPR[max aver], cos(φg)R[max aver]

The maxima listed above are developed according to the following algorithm:

If (X[moy] > XR[maxmoy]) AND $(P[moy] \ge 0)$

Then (XR[maxmoy] = X[moy])

25.25.3 Maxima (C)

The products also calculate the maxima of average variables in the two quadrants corresponding to generator mode. These maxima are the following:

- PG[max aver], QG[max aver],
- FPG[max], cos(φg)G[max]

The maxima listed above are developed according to the following algorithm:

If (X[moy] > XG[maxmoy]) AND (P[moy] < 0)

Then $(XG[\max moy] = X[moy])$.

26. INDEX

%, 26 3/4 wire By default, 47 Configuration, 47 A. 26 Abbreviations, 26 Activation Global alarm, 40 Active energy, 26 Active Energy EP-, 34 Active Energy EP+, 33 Active power Mathematical formulas, 87 Active power, 26 Address ENERIUM, 74 ModBus, 37 Addresse By default, 47 Alarm Synchronization, 57 Alarms Characteristics, 80 Icon, 25 Number, 39 Relays, 39 Resetting, 40 Screen, 39 Status, 39 Analog cards Connection, 67 Analog outputs Affected values, 20 Blocking, 20 Card, 20 Min/max values, 20 Output definition, 20 unblocking, 20 Analog Outputs Characteristics, 80 Apparent energy, 26 Apparent energy I/O-, 34 Apparent energy I/O+, 34 Apparent power, 26 Apparent power, 26 Apparent Power Mathematical formulas, 88 ASCII, 46 Automatic scrolling Icon, 16, 26 Auxiliary source Connection, 68 Terminal, 19, 20

Auxiliary supply source Characteristics, 82 Average current, 26 Average power, 30 Average variable Mathematical formulas, 91 Backlighting, 15 Balanced three-phase, 64 Blocking Analog outputs, 20 Pulse, 21 Breakdown, 8 By default 3/4 wire, 47 Contrast. 47 Display, 47 Electrical network, 47 Ethernet Communication, 47 Language, 47 Password, 47 Scrolling TC primary, 47 TC secondary, 47 Time, 47 TP primary, 47 TP Secondary, 47 Cable RS485, 65 Cables Dimension, 63 Cabling (test), 26 Cabling test, 26 Calcul of minima Mathematical formulas, 92 Calculation of maxima Mathematical formulas, 92 Capacitive network Icon, 16, 26 Caracteristics Table, 14 Card Analog outputs, 20 Input/Output, 37 On/Off input/output, 21 On/Off inputs, 21 On/Off outputs, 20 CEI 61010-1.8 Characteristics Alarms, 80 Analog outputs, 80 Auxiliary supply source, 82 Current inputs, 81 Display, 81

Electrical, 81 Ethernet, 82 Information retention, 82 Keys, 81 LCD. 81 Load curves, 80 Measurements, 79 Mechanical, 84 Metrology, 83 On/Off I/O card, 83 On/Off input card, 82 On/Off output card, 83 Optical interface, 82 Output analog card, 82 Recording curves, 80 RS485, 81 Voltage inputs, 81 Cleaning, 8 Command word LCD, 15 Communication Card, 37 Local or remote, 73 Remote, 73 Communication ongoing Icon, 16 Communication RS 485 By default, 47 Communication speed, 74 Configuration 3/4 wire, 47 Change, 55 Default values, 47 Icon, 25 Password, 45 Remote communication, 43 Screen, 43 TC primary, 46 TC secondary, 47 TP Primary, 46 TP secondary, 46 Configuration change, 55 Connection Analog cards, 67 Auxiliary source, 68 Cards E/S, 67 Ethernet, 66 On/Off I/O cards, 68 On/Off input cards, 67 Output cards, 67 RS485, 65 Contrast Adjust level, 45

By default, 47 Dsiplay, 45 Contrast LCD, 15 Contrast level Adjust, 45 Copyright, 9 $Cos(\phi)$ Mathematical formulas, 88 Current, 30 Fresnel, 52 Harmonics. 50 Mathematical formulas, 87 Transformer, 46 Current input Terminal, 19 Current inputs Characteristics, 81 Connections, 63 Terminal, 19 Currents Display rule, 31 Fresnel, 52 Gauges, 52 Cursor Move. 17 Customized screens Icon, 25 Screen, 41 Cutting, 61 Date Display, 38 Synchronization, 57 Default values Configuration, 47 Delivery default values, 47 DHCP, 74 Dimensions, 13 DIN 43700, 13 Display By default, 47 Characteristics, 81 Contrast, 45 Language, 45 Password, 45 Remote communication, 45 Scrolling, 45 Time, 45 Display rule Currents, 31 Energies, 35 Frequency, 32 Harmonics, 32 Power, 32 Power factor, 32 Time meter, 32 Voltages, 31 Distributed (neutral), 47 E.view, 73 Electric variables, 26 Electrical connection, 63 Electrical network 3/4 wire. 47 By default, 47 Remote communication, 46 TC primary, 46

TC secondary, 47 Electrical parasites, 63 Elementary alarm Global alarm, 40 Statuts, 40 End of life. 9 Energies Display rules, 35 Energy Icon, 25 Screen, 33 Energy and metering Mathematical formulas, 90 ENERIUM Accessories, 85 Address, 74 Cuting, 61 Electrical connection, 63 Fixation tableau. 61 Maintenance, 75 Mechanical assembly, 61 Mechanical characteristics, 84 Number, 37 Technical characteristics, 77 Type, 37 Use, 69 ENERIUM 150, 13 ENERIUM 150 Comparison, 14 ENERIUM 50, 13 ENERIUM 50 Comparison, 14 Equation Global alarm, 40 Ethernet Address by default, 47 Characteristics, 82 Connection, 66 Gateway, 45 Gateway by defaumt, 47 IP Address, 44 LED. 67 Mask, 44 Mask by default, 47 Remote communication, 44, 74 Terminal, 19, 22 Ethernet Communication By default, 47 Face Front, 15 Format, 13 FP. 26 French Language, 45 Frequency, 26 Display rule, 32 Mathematical formulas, 89 Fresnel 3I. 52 Fresnel 3U, 51 Fresnel 3V, 51 Fresnel and gauges Icon. 25 Screen. 51 Front Face, 15 Full duplex, 74 Fuse

Protection. 68 Gateway By default, 47 Remote communication, 45 Gauges 3I, 52 Gauges 3P, 53 Gauges 3U, 52 Gauges 3V, 52 Generator network Icon, 16, 26 German Language, 45 Global alarm Activation, 40 Blinking, 40 Elementary alarm, 40 Equation, 40 Icon, 16, 26 Relays, 40 Screen. 40 Status, 40 Ground voltage Fresnel, 51 Mathematical formulas, 87 Guarantee, 9 Half duplex, 73, 74 Harmonic distortion rate, 26 Harmonic rate, 26 Harmonics Current, 31 Display rules, 32 Icon, 25 Mathematical formulas, 89 Percentage, 49 Ph-Ph voltage, 31 Ranges, 49 Rates, 49 Screen, 49 THD. 49 Harmonics I, 50 Harmonics rate Mathematical formulas, 89 Harmonics U, 49 Harmonics V, 49 Home screen, 16 Hour, 38 Display, 38 How to, 71 Hub, 66 Hxx la, 26 Hxx Uab, 26 Hz, 26 Harmonics, 50 Icons Alarms, 25 Automatic scrolling, 16, 26 Capacitive network, 16, 26 Communication ongoing, 16 Configuration, 25 Customized screens, 25 Energy, 25 Fresnel and gauges, 25 Generator network, 16, 26 Global alarm, 16, 26 Harmonics, 25 Inductive network, 16, 26

Measure. 25 Ongoing communication, 26 Phase order, 26 Phase order, 16 Services. 25 In. 26 In load, 38 Indicators Recording curves, 58 Inductive network Icon, 16, 26 Information Retention duration, 82 Information retention Characteristics, 82 Installation, 59 Cleaning, 8 Instructions, 8 Installation Category, 8 Instantaneous current, 26 Instantaneous ground voltage, 49 Integration time, 55 IP address Remote communication, 44 IP address By default, 47 Italian Language, 45 lx, 26 JBus Address, 44 Key navigation, 17 OK, 17 Keys Characteristics, 81 kVAh, 26 kVARh, 26 kWh, 26 Language By default, 47 Display, 45 French, Italian, German, Spanish, 45 LCD, 15 Backlighting, 15 Blinking, 40 Characteristics, 81 Command word, 15 Contrast, 15 Stop blinking, 40 LCD screen, 15 LCD Screen, 15 LED Ethernet, 67 Line voltage Fresnel, 52 Line voltages Mathematical formulas, 87 Load curves Screen, 55 Local communication Optical interface, 73 Loss of synchronization, 55 Maintenance ENERIUM, 75 Management On/Off inputs, 21

On/Off outputs, 21 Manumesure, 75 Mask By default, 47 Remote Communication, 44 Mathematical formulas Apparent Power, 88 Energy and metering, 90 Frequency, 89 Harmonics rate, 89 Line voltages, 87 Maxima of variables, 93 Peak factor, 89 Phase order, 90 Power factor, 88 Reactive power, 88 Unbalance, 90 Mathematical formulas Ground voltage, 87 Mathematical formulas Current, 87 Mathematical formulas Active power, 87 Mathematical formulas Transit direction of powers, 88 Mathematical formulas Cos(\phi), 88 Mathematical formulas Tan(φ), 89 Mathematical formulas Harmonics, 89 Mathematical formulas Time meter, 91 Mathematical formulas Average variable, 91 Mathematical formulas Calculation of minima, 92 Mathematical formulas Minima of variables, 92 Mathematical formulas Calculation of maxima. 92 Mathematical formulas Maxima of average variables, 93 Maxima of average variables Mathematical formulas, 93 Maxima of variables Mathematical formulas, 93 Maximum average current, 30 Measured variables, 87 Measurements Screen, 29 Measures Icon, 25 Mecchanical assembly, 61 Mechanical Characteristics, 84 Menu Main, 15, 25 Move, 17 Menus Synoptic, 26 Mesurements Characteristics, 79 Meters Active energy, 33 Apparent energy, 34 Initialize, 21

Reactive energy, 34 Metrology Characteristics, 83 Minima of variables Mathematical formulas, 92 ModBus/RTU. 73 Mono-phase, 65 Move Cursor, 17 Menu, 17 MVAh, 26 MVARh, 26 MWh, 26 Navigation Key, 17 Navigation key, 15 Neutral Distributed, 47 Non-distributed, 47 Neutral current. 26 Non-distributed (neutral), 47 Number ENERIUM, 37 oad curves Characteristics, 80 OK, 15 Key, 17 OK key, 15 On/Off I/O card Characteristics, 83 On/Off I/O cards Connection, 68 On/Off input Synchronization, 57 On/Off input card Characteristics, 82 On/Off input cards Connection, 67 On/Off input/output Card, 21 On/Off inputs Card, 21 Management, 21 Pulse mode, 21 Synchronization mode, 21 On/Off output card Characteristics, 83 On/Off output cards Connection, 67 On/Off outputs Card, 20 On/Off outputs Alarm mode, 21 On/Off outputs Max/min threshold, 21 On/Off outputs Pulsed mode, 21 On/Off outputs Mode Associate output, 21 On/Off outputs Relays, 21 On/Off outputs Management, 21 Ongoing communication Icon, 26 Operating procedure, 71 Operating time, 38 Operators' safety, 8

Optical Cable, 17 Interface, 16 Optical cable, 17 optical interface Local communication, 73 Optical interface, 15, 16 Characteristics, 82 Optional card Terminal, 19, 20 Output Associate On/Off outputs, 21 Output analog card Characteristics, 82 P, 26 Packaging, 10 Par default Communication RS 485, 47 Parity By default. 47 Remote communication, 44 Password 0000.46 By default, 47 Configuration, 45 Display, 45 Time lag, 46 Peak factor Mathematical formulas, 89 Percentages of harmonics, 49 Period Recording curves, 57 Phase order Mathematical formulas, 90 Phase order Icon, 16, 26 Phase shift Fresnel (gound current), 52 Fresnel (ground voltage), 51 Fresnel (line voltage), 52 Ph-N voltage, 29 Ph-Ph Voltage, 29 Pmoy, 26 Polarity Supply, 68 Power, 30 Display rule, 32 Power factor Mathematical formulas, 88 Power factor, 26 Display rule, 32 Powers Gauges, 53 Presence network, 38 Presentation, 13 Product information, 37 Property rights, 9 Protection Electrical parasites, 63 Fuse, 68 Voltage inputs, 63 Pulse Blocking, 21 On/Off inputs, 21 Tally, 21 Weight, 21 Width, 21

Pulsed mode Associate output, 21 On/Off outputs, 21 Tally, 21 Q. 26 Ranges of harmonics, 49 Rates of harmonics, 49 RAZ Status word for alarms, 40 Reactive energy, 26 Reactive Energy EQ, 34 Reactive power Mathematical formulas, 88 Reactive power, 26 Real composed voltage, 26 Real RMS voltage, 26 Recorded variables, 57 Recording Depth, 55, 57 Recording curves Characteristics, 80 Continuous mode, 57 Filling rate, 58 Indicators, 58 Mode buffer stop, 57 Mode with immediate stop, 58 Mode with stop centered 25, 58 Mode with stop centered 50, 58 Operating modes, 57 Period, 57 Screen, 57 Recording period, 57 Registered trademarks, 9 Relavs Alarm (associated), 39 Global alarm. 40 On/Off outputs, 21 Remote communication Display, 45 Electrical network, 46 Ethernet, 44, 74 Gateway, 45 IP address, 44 JBus address, 44 Mask, 44 Parity, 44 Reversal, 44 RS 485, 43 RS485, 73 Speed, 44 Remote Communication Configuration, 43 Stop bit, 44 Resetting Alarms, 40 Resistance Polarization, 66 Reversal By default, 47 Remote communication, 44 RJ 45.66 RS 485 Addresse by default, 47 JBus Address, 44 Parity, 44 Parity by default, 47 Remote communication, 43

Reversal, 44 Reversal by default, 47 Speed, 44 Speed by default, 47 Stop bit, 44 Stop bit by default, 47 RS232, 66 RS485, 37 Characteristics, 81 Connection, 65 Output, 65 Polarization resistance, 66 Remote communication, 73 Terminal, 19, 21 Transmission format, 74 S, 26 Safety, 8 Screen Alarms, 39 Configuration, 43 Customized screens, 41 Energy, 33 Fresnel and gauges, 51 Global alarm, 40 Harmonics, 49 Home, 25 Load curves, 55 Measurements, 29 Recording curves, 57 Resetting alarms, 40 Services, 37 Screen number Read, 16 Scrolling Automatic, 45 By default, 47 Display, 45 Services Icon. 25 Screen, 37 Shielded twisted cable, 66 Simple voltage, 26 Smoy, 26 Spanish Language, 45 Speed By default, 47 Remote communication, 44 Status Global alarm, 40 Status word for alarms, 40 Stop bit By default, 47 Remote communication, 44 Supply Alternative, 20 Continuous, 20 High level, 20, 68 Low level, 20, 68 Polarity, 68 Switch, 66 Synchronization Loss, 55 Modes, 57 On alarm, 57 On date, 57 On On/Off input, 57

FRANCE Chauvin Arnoux Energy 16, rue Georges Besse - Silic 44 92182 Antony cedex Tel. : +33 1 75 60 10 30 Fax : +33 1 46 66 62 54 info@chauvinarnoux.fr www.chauvin-arnoux-energy.fr

Chauvin Arnoux Energy 16, rue Georges Besse - Silic 44 92182 Antony cedex Tel. : +33 1 75 60 10 30 Fax : +33 1 46 66 62 54 export@chauvinarnoux.fr www.chauvin-arnoux-energy.fr

